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ARTICLE

Solving the next release problem by means of the fuzzy logic
inference system with respect to the competitive market
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aDepartment of Computer Engineering, Babol Branch, Islamic Azad University, Babol, Iran; bDepartment of
Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran; cDepartment of Computer Engineering,
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ABSTRACT
A number of software programms are developed in several releases.
Before developing any new release, a set of requirements is suggested
for inclusion in the release. Having multiple constraints, it is impossible to
develop all the requirements proposed in the next release. The presence
of competing companies, replication of product ideas, shortening of the
development time and lack of project funding will reduce the cost of
developing a release. Developer teams should select a subset of the
proposed requirements for development that would provide their clients
with the highest amount of satisfaction despite the deadline limitations or
cost constraints. The existence of conflicting goals and other constraints
makes this choice very complicated. In this paper, an algorithm is intro-
duced which is based on a fuzzy inference system to determine the
suitability of each requirement for development in the next release. The
proposed algorithm, rather than the developer team, takes the responsi-
bility to select the optimal subset of requirements for the development of
the next release. Experimental results of the proposed algorithm are then
compared with the results of the genetic algorithm. The subset selected
by the proposed algorithm provides much more satisfaction than the
genetic algorithm.
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Introduction

Today, software programms are required for management, monitoring and control in many indus-
tries. The complexity of the software structure has made software productionmethods more difficult.
One of the methods of generating large software is the incremental development method. In the
incremental development method, the software product is developed in several releases (Odzaly,
Greer, & Stewart, 2017). In each release, a set of requirements is proposed for development. Due to
various problems, it is almost impossible to develop all the proposed requirements in the current
release. Software companies take several goals into consideration simultaneously prior to the
production of each product. Examples of such goals are: an increase in client satisfaction,
a reduction in production costs and a shorter delivery time of the next release. The presence of
multiple software companies has greatly increased competition in product development in such
a way that in many cases, new ideas and features of newly-presented software are copied by other
companies. General and partial copying of the features of a software product has become a concern
for manufacturing companies. This concern grows as the product is developed iteratively and in
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several releases. For this reason, manufacturing companies try to shorten the distance between the
deliveries of successive releases in order to be ahead in the competition with other competitors. On
the other hand, client satisfaction rate and software production costs are also important. Selecting an
optimal subset of the proposed requirements which can provide clients with the most satisfaction in
the shortest time and at the lowest cost has become a major challenge to software companies. The
existence of several conflicting goals and constraints has made this choice very difficult (Mougouei &
Powers, 2017). For example, the two goals, namely reducing the time and increasing satisfaction, are
contradictory. An extreme reduction in production time reduces quality and satisfaction. Other
constraints on this choice include interactions between requirements and setting the deadlines.
The interactions between requirements are of different types. For example, two requirements may
conflict with each other, or it also may not be possible for both of them to be developed in one
release. Yet another type of interaction is when two requirements must necessarily be developed
simultaneously. The deadline is also usually enforced by software companies themselves. For
example, the next release should be available on the market for the next 9 months in all circum-
stances. Or, for example, the cost of producing a release should not exceed 75% of the considered
budget.

The problem of selecting an optimal subset of requirements for development in the next release is
known as the Next Release Problem (NRP) (Bagnall, Rayward-Smith, & Whittley, 2001). The research
motivation is to introduce an intelligent method to select an optimal subset of requirements giving the
highest level of clients’ satisfaction in the shortest time and at the lowest cost, while satisfying the
constraints of the problem. The challenge of this research is the existence of three conflicting goals and
two kinds of constraints leading to a problem belonging to the category of NP-hard problems. The
purpose of solving this problem is to help the developer team with the decision-making process. The
Fuzzy theory is a suitable method for solving ambiguous and uncertain problems. This theory has so far
solved many engineering problems that previously had uncertainties and conflicting goals
(Alrezaamiri, Ebrahimnejad, & Motameni, 2019; Ebrahimnejad, Karimnejad, & Alrezaamiri, 2015;
Ebrahimnejad, Tavana, & Alrezaamiri, 2016; Shirmohammadi & Hadadi, 2019, 2017).

If the subset of optimal requirements for development in the next release is selected by the
members of the developer team itself without using any tools, these choices will certainly be subject
to the style of the choices and human error. On the other hand, bad or non-optimal choices will
surely lead to clients’ dissatisfaction and a reduction in product quality (Ralph, 2018). In this paper,
we present an algorithm that uses the fuzzy inference system to determine the suitability of each
requirement for development in the next release. The proposed algorithm will then make greedy
choices based on the suitability of each requirement and according to the constraints of the
problem. Due to the use of fuzzy logic, the requirements selected by the proposed algorithm will
lack human errors. The main contributions of this study are summarised as follows:

● This research has been conducted with a consideration of the competition scenario in the
market and attention to reducing the risk of copying ideas of the software product.

● In addition to cost and customer satisfaction objectives, this research has also considered the
objective of development time.

● In contrast to the existing techniques, the proposed algorithm uses a fuzzy inference system for
solving a three-objective problem.

● In contrast to the existing techniques, utilising the proposed algorithm could reduce human
errors in selection of optimal subsets.

The rest of the paper is organised as follows. Section 2 reviews the related literature. Section 3
explains the next release problem. Section 4 presents the proposed method. Section 5 examines the
results of the experiments, and finally, Section 6 concludes the paper.
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Literature review

So far, several algorithms and methods have been introduced to solve the next release problem.
A full classification of these methods is given in (Hudaib, Masadeh, Qasem, & Alzaqebah, 2018;
Pitangueira, Maciel, & Barros, 2015). Based on a simple grouping, most of the methods introduced for
solving this problem fall into two general categories. The first category includes optimisation
methods that use linear programming approaches, as well as heuristic and metaheuristic algorithms.
The second category includes methods that rank the requirements and then select the best ranks.
This category has used methods such as the Quality Function Deployment (QFD), Analytical
Hierarchy Process (AHP) and Fuzzy Logic.

In 2001, Bagnall et al first solved the NRP problem (Bagnall et al., 2001). In this paper, authors first
used the linear programming method to find the exact solution to the problem. Then, they used
methods based on local search algorithms. In NRP problems with a low number of requirements, the
linear programmingmethod finds the exact solution to the problem at the right time. However, if the
problem is large, the linear programming method cannot solve the problem in a reasonable time
span. Other methods introduced in this paper failed to obtain high-quality solutions due to the
weakness in their search capabilities. Veerapen, Ochoa, Harman, and Burke (2015) used the integer
linear programming method in two problems, namely single-objective and multi-objective pro-
blems. They were able to find the exact solution to the problem in the cases of the single-objective
and small multi-objective problems. However, their proposed method did not have a proper runtime
in the case of large multi-objective problems. Mougouei (2016) proposed a linear programming
model for selecting requirements according to the interactions between them. In this paper, they
also presented a technique for modelling the interactions between requirements by means of
a graph. NRP is inherently a multi-objective problem. However, in some papers, the authors have
turned the problem into a single-objective problem by giving weight to each objective. Greer and
Ruhe (2004) introduced a new method and used a genetic algorithm to determine the optimal
subset of requirements. Araújo, Paixao, Yeltsin, Dantas, and Souza (2017) introduced an architecture
based on genetic algorithm andmachine learning to solve this problem. To select the optimal subset
of requirements, Jiang, Zhang, Xuan, Ren, and Hu, (2010), combined the Ant Colony Optimisation
algorithm (ACO) with the Hill Climbing algorithm leading to an increase in the quality of the problem
solutions. Masadeh et al. (Masadeh, Alzaqebah, Hudaib, & Rahman, 2018) used the Grey Wolf
Optimisation (GWO) algorithm to select the best proposed requirements. The Ants Colony System
(ACS) algorithm has been used by Del Sagrado, Del Aguila, and Orellana (2015) for solving the multi-
objective problem. In that paper, three types of interactions between requirements were defined
and considered in the implementation. The Teaching-Learning-Based Optimisation (TLBO) algorithm
was used to solve the next release problem by Chaves-González, Perez-Toledano, and Navasa
(2015a). In that paper, three types of interactions between requirements were also considered.
Chaves-González et al. (Chaves-González & Pérez-Toledano, 2015; Chaves-González, Perez-
Toledano, & Navasa, 2015b) also used a Multi-Objective Artificial Bee Colony Optimisation
(MOABC) algorithm and developed Differential Evolution with the Pareto Tournament (DEPT) algo-
rithm to solve this problem. Xuan, Jiang, Ren, and Luo (2012) proposed a Backbone-based Multilevel
Algorithm (BMA) to address the large scale NRP. In contrast to direct solving approaches, BMA
employs multilevel reductions to downgrade the problem scale and multilevel refinements to
construct the final optimal set of customers. In both reductions and refinements, the backbone is
built to fix the common part of the optimal customers. Paixao and Souza (2015) presented a robust
model, where the uncertainties related to the requirement’s importance were modelled in a discrete
way using the concept of scenarios (Paixao & Souza, 2015). Ferreira et al (Ferreira, Araújo, Neto, & de
Souza, 2016) proposed an interactive model for the Next Release Problem using Ant Colony
Optimisation, where the user can define which requirements he would like to include or exclude
in the next release.
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Karlsson has used two methods, AHP and QFD to select and prioritise software requirements. The
requirements were classified and prioritised in the AHP and QFD methods, respectively. In projects
with a high number of requirements, these two methods are not suitable due to their long runtime
(Karlsson, 1996). Sadiq and Jain (2014) applied fuzzy preference relations for requirements’ prior-
itisation in goal-based requirements in the elicitation process. This method was developed by
combining weighted relationships and Fuzzy AHP (FAHP). The AHP method based on the cost-
value prioritisation technique was used in several industrial projects by Chopra et al. (Chopra, Gupta,
& Chauhan, 2016). In that paper, they also prioritised both the functional and non-functional
requirements. Ramzan, Jaffar, and Shahid (2011) introduced the concept of the requirement value
for prioritising requirements using fuzzy logic. The fuzzy inference system was used to prioritise
requirements and overcome the uncertainty of the problem by Alrashoud and Alrashoud and Abhari
(2015). They had considered three criteria, namely the importance of each requirement, risk and
effort for the decision-making process. Alrashoud and Abhari (Alrashoud & Abhari, 2017) considered
three criteria, namely stakeholders’ satisfaction, risk and availability of resources in planning for the
next release. Authors used the Adaptive Network-based Fuzzy Inference System (ANFIS) for solving
the next release problem. In our most recent work, we formulated the NRP problem for the first time
as a fuzzy multi-objective optimisation problem (Alrezaamiri et al., 2019). We used an artificial
chemical reaction optimisation algorithm to solve this problem. In the implementation stage, we
applied five interactions between requirements as one of the constraints of the problem for the first
time. The results and diagrams of the proposed algorithm showed very reliable solutions. The results
of related works in terms of utilised techniques, performance metrics, advantages, and disadvan-
tages have been given in Table 1.

Formulating the next release problem

In this section, we will formulate the next release problem. In the NRP problem, n requirements are
proposed for development in the next release. This set is represented by R ¼ fr1:::rng. Each require-
ment has a cost and an estimated time for development. The cost and development time of each
requirement are estimated by the developer team. The cost of each requirement is defined in the set
E ¼ fe1:::emgand the development time is also defined in the set T ¼ ft1:::tng. The set R is proposed
by the m client denoted by the set C ¼ fc1:::cmg. Each client has an importance level for the software
company. Also, the clients’ importance levels are defined with the W ¼ fw1:::wmg set. It is assumed
that each client in C gives a value to each requirement in R. The value that a requirement rj has for
a particular client ci is given by an amount vij > 0. A matrix ofm� n holds all the importance values vij.
The total satisfaction bjof a given requirement rj is calculated as the weighted sum of its values for all
the clients considered, and can be expressed as indicated in formula (1). The set of the total satisfaction
calculated in that way is denoted by B ¼ fb1; b2; :::; bng(Chaves-González et al., 2015b).

bj ¼
Xm
i¼1

wi � vij (1)

Thus, for each requirement ri, a cost ci, a development time ti and a satisfaction amount bi are considered.
The objective of the problem is to select a subset of requirements that provide the highest satisfaction for
clients with the least cost and in the shortest time of development. In addition to these three objectives,
there are two constraint categories commonly used for this problem. The first category of constraints is
the threshold amount of the development cost or the threshold amount of the development time of
release, which is considered by the software company. The cost of developing a release is equal to the
sumof the cost of each developed requirement. Despite this constraint, a number of requirements will be
selected whose total cost of development does not exceed the threshold value. The constraint of the
threshold amount of the development time is also applied when the software company sets a deadline
(of sixmonths, for example) for the developer team to finish the release process depending on themarket
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and competitors. Despite this constraint, a number of requirements will be selected whose total amount
of development time is less than the specified deadline.

The second category of constraints is the interactions between the requirements. There are
different types of interactions and dependencies between requirements which manifest themselves

Table 1. Results of different approaches.

Ref-Aut-year Method Metric Advantage Disadvantage

Bagnall et al.
(2001)

Linear programming
& Local search

Max profit
Min Cost

Problem well formulated Long runtime

Ralph (2018) Liner Programming HV, NDS Finds exact solution Long runtime
Pitangueira et al.
(2015)

New Method Overall Value Introduced a new modal
(GORS)

Cost dependencies were not
considered in the model

Hudaib et al.
(2018)

New Method Combination
of benefit and
penalty

Introduced a powerful
method (Evolve)

Uncertainty was not
considered in method

(Veerapen et al.,
2015)

New Method
(IGA)

Similarity Degree
Similarity Factor
Price of Preference

Introduced a new
Architecture

Architecture just considered
one stakeholder
subjectively

(Chaves-González
et al., 2015b)

New Method
(PRFGORE)

Ranking Values Linguistic variables used
in the method

Interaction between
requirements not
considered

(Alrashoud &
Abhari, 2017)

New Method
(BMA)

Ratio CBS
Ratio OC in the CB

Solves the large scale
NRP

Only one kind of requirement
interaction considered

(Hsieh, Hsu, & Lin,
2018)

New Model
(ROF)

Reduction Factor Considered uncertainty
in the NRP

Used of weak evolutionary
algorithms to evaluate the
model

(Xiang, Yu,
Lapierre, Zhang,
& Zhang, 2018)

New Model
(ACO)

Effectiveness
Reduction Factor

Considered interactive
algorithm

Interaction between
requirements not
considered

Mougouei (2016) Meta Heuristic
(ACO+Hill
Climbing)

Max profit
Runtime

Introduced a simple
method

Just a single objective
considered

(Greer & Ruhe,
2004)

Meta Heuristic
(GWO)

Ratio cost/value
runtime

Short runtime The paper did poor
evaluation

Araújo et al. (2017) Meta Heuristic
(ACS)

NDS, HV, Spread,
Spacing, Runtime

Paper did good
evaluations

Uncertainty not considered in
method

(Jiang et al., 2010) Meta Heuristic
(TLBO)

NDS, HV, Spread,
Runtime

Introduced a strong
method

Uncertainty not considered in
method

(Masadeh et al.,
2018)

Meta Heuristic
(MOABC)

NDS, HV, Spread,
Runtime

Introduced an
interesting method

Uncertainty not considered in
method

(Del Sagrado et al.,
2015)

Meta Heuristic
(DEPT)

NDS, HV, Spread,
Runtime

Introduced a simple and
attractive method

Uncertainty not considered in
method

(Alrashoud &
Abhari, 2015)

Meta Heuristic
(ACRO)

NDS, HV, Spread Five interactions
between
requirements were
considered

Requirement features were
just the kind of triangular
fuzzy numbers

(Chaves-González
et al., 2015a)

AHP, QFD Pair-wise comparison Introduced the first
approach to solve the
NRP

Very long runtime

(Chaves-González
& Pérez-
Toledano, 2015)

AHP Pair-wise comparison Functional & non-
functional
requirements
considered

The paper did poor
evaluation

(Chaves-González
& Pérez-
Toledano, 2015)

Fuzzy logic Requirement value Introduced a multi-level
value based
technique

Interaction between
requirements not
considered

(Paixao & Souza,
2015)

Fuzzy Inference
System (FIS)

Rank For the first time, three
objectives considered

Just two interactions between
requirements considered

(Ferreira et al.,
2016)

Adaptive Network-
based Fuzzy
Inference System

Rank Used historical data and
the learned process of
ANFIS

Dependency between
requirements not
considered
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as constraints in the problem. In paper (Del Sagrado et al., 2015), the interaction between the
requirements was classified into four broad categories.

-Implication. ri⇒ rj If the requirement ri is not developed, the requirement rj cannot be developed
either.

-Combination. ri ⊕ rj. A requirement ri cannot be chosen separately from a requirement rj.
-Exclusion. ri � rj. A requirement ri cannot be chosen together with a requirement rj.-Modification.

The development of the requirement implies that some other requirements change their satisfaction
or implementation effort.

Despite these objectives and constraints, determining priority between requirements is a very com-
plicated task. We will use the fuzzy inference system to prioritise the requirements in these conditions.

The proposed method

As explained in the previous sections, selecting an optimal subset of the proposed require-
ments has become an important challenge for developer teams. The existence of conflicting
goals has placed this problem in the NP-hard problems category. Considering several oppos-
ing objectives, as well as several constraints and problem enlargements, most of the solutions
presented earlier are ineffective or difficult. For example, linear programming methods for
large and complex problems will have a very long runtime. Single-objective metaheuristic
algorithms are faced with the challenge of weighting each objective. In addition, some
objectives must be maximised and some others must be minimised. The output of multi-
objective metaheuristic algorithms is a set of solutions. The developer team must select one
of them again as the final solution. These choices and weights are always accompanied by
human errors. Our proposed algorithm uses a fuzzy inference system to solve this problem
and then makes greedy choices based on constraints. The Fuzzy Inference System (FIS) has
great ability in helping solve complex decision-making problems. The fuzzy inference system
is established based on the if-then rules as a result of which it is possible to obtain the
relation between a number of input and output variables. Therefore, FIS can be used as
a prediction model for situations where input and output data are highly uncertain (Hsieh
et al., 2018; Pourjavad & Shahin, 2018; Xiang et al., 2018).

To make a fuzzy inference, a basic fuzzy system is determined based on the observational
data. Then, the Premise and Consequent parts are fuzzified using fuzzy membership func-
tions. In the following, different parts of the Premise of each of the rules are combined after
which the effect of each rule on the final output of the system is determined. Finally, the
Consequent parts of rules are combined in the form of a fuzzy set to obtain the final output
of a system. By using defuzzification methods, the fuzzy output of the system becomes
a definite number. In this paper, we use the Mamdani implication method which uses the
maximum-minimum method for combining fuzzy rules. Accordingly, to determine the suit-
ability of each requirement, we use three input fuzzy variables and one fuzzy output variable
for development in the next release. For each of the requirement characteristics, namely the
development time, the development cost and the satisfaction rate, an input fuzzy variable is
defined. Also, for each of the input fuzzy variables, we consider three linguistic variables,
namely low, medium, and high. The only fuzzy output variable of the fuzzy inference system
is the degree of suitability of each requirement which has five linguistic variables: very low,
low, medium, high and very high. Triangular and trapezoidal membership functions have
been used to display linguistic variables. The triangular and trapezoidal membership func-
tions used in the fuzzy inference system can be seen in formulas (2) and (3), respectively.
Table 2 shows 27 rules for the fuzzy inference engine.
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μðxÞ ¼
0 x � a
x�a
b�a a< x � b
c�x
c�b b � x< c
0 c � x

8>><
>>:

(2)

μðxÞ ¼

0 x � a
x�a
b�a a< x � b
1 b � x � c

d�x
d�c c � x< d
0 d � x

8>>>><
>>>>:

(3)

Two prominent rules in this table are:

● If the development time of a requirement is low, and the cost of its development is also low
while its satisfaction rate is high, the suitability of this requirement for development is very
high.

● If the development time of a requirement is high, and the cost of its development is also high
while its satisfaction rate is low, the suitability of this requirement for development is very low.

In algorithm (1), you can see the proposed method. This algorithm is written with a focus on the
limit of the time threshold value. This algorithm can also be used with a slight change for problems
with cost threshold constraints.

The inputs of the algorithm are the amount of time, cost, and overall satisfaction with each
requirement. The fuzzy rules and the threshold value are also received from the input. The outputs
of the algorithm, i.e. the development cost, the development time and satisfaction rate are the subset
of the selected requirements. The selected requirements are stored in the NextRel set. The capacity
variable holds the development time of the selected requirements. The value of this variable is 0 before
the requirements are selected. The algorithm first runs the fuzzy inference system. After defuzzification,
the suitability level of each developmental requirement for the next release is determined as a number.
The algorithm creates a data structure called Req which holds the suitability, cost, time, and overall
satisfaction with each requirement. Then, it arranges these structures according to their suitability. In
the loop, the requirements are assessed with respect to their suitability in order to examine the
constraints. For each requirement, the type-1 constraint (time threshold value) is checked first. If it
does not violate the type-1 constraint requirement, the type-2 constraint (interaction between require-
ments) will be checked. In Section 3, three categories of interaction between requirements were
defined. In the proposed algorithm, when facing any requirement ri that is dependent, we perform
one of the following actions in accordance with its interaction type at the time of greedy choices.

Table 2. Fuzzy if – then rules.

Time Cost Satisfaction Suitability Time Cost Satisfaction Suitability

1 Low Low High Very High 15 Medium Medium Low Low
2 Low Low Medium Very High 16 Medium High High Medium
3 Low Low Low High 17 Medium High Medium Low
4 Low Medium High Very High 18 Medium High Low Very Low
5 Low Medium Medium High 19 High Low High High
6 Low Medium Low Medium 20 High Low Medium Medium
7 Low High High High 21 High Low Low Very Low
8 Low High Medium Medium 22 High Medium High Medium
9 Low High Low Low 23 High Medium Medium Low
10 Medium Low High Very High 24 High Medium Low Very Low
11 Medium Low Medium High 25 High High High Low
12 Medium Low Low Medium 26 High High Medium Very Low
13 Medium Medium High High 27 High High Low Very Low
14 Medium Medium Medium Medium
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Algorithm 1: A pseudocode of the proposed method.

1- input threshold, t, e, b, fuzzy rules.
2-output NextRel, cost, satisfaction, capacity.
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
3-initialise capacity = 0, cost = 0, satisfaction = 0, NextRel = empty;
4-for I = 1: n
5-suitability(i) = FIS (t, e, b) /* calculate suitability requirement i using fuzzy if-then rules given in table 1. */
6-end for
7- build structure Req and sort them based score suitability;
8-for I = 1: n /* for each requirement */
9- if (t.Req(i) + capacity < threshold) /* investigate constraint type 1 */

10- if the requirement Req(i) do not have an interaction /* investigate constraint type 2 */
11- NextRel = NextRel [ Req(i) /* Req(i) selected for development in the next release.*/
12- capacity = capacity + t.Req(i); /* amount of time developing the requirements that have been selected so far */
13- cost = cost + e.Req(i);
14- Satisfaction = Satisfaction + b.Req(i);

15- else /* If the requirement Req(i) has an interaction with other requirements*/
16- if (Reqi � Reqj)
17- If (t.Req(i) + t.Req(j) + capacity < threshold) /* both requirements select together */
18- NextRel = NextRel [ Req(i) [ Req(j);
19- capacity = capacity +t.Req(i) + t.Req(j);
20- cost = cost + e.Req(i) + e.Req(j);
21- satisfaction = satisfaction + b.Req(i) + b.Req(j);
22- end if
23- else if (Reqj ! Reqi)
24- if(Req(i) be selected before)
25- NextRel = NextRel [ Req(i);
26- capacity = capacity + t.Req(i);
27- cost = cost + e.Req(i);
28- satisfaction = satisfaction + b.Req(i);
29- end if
30- elseif (Reqi � Reqj)
31- if (Req(j) don not be selected before)
32- NextRel = NextRel [ Req(i);
33- capacity = capacity + t.Req(i);
34- cost = cost + e.Req(i);
35- satisfaction = satisfaction + b.Req(i);
36- end if
37- end if
38- end if
39- end if
40- end for

If the requirement ri has an interaction combination with a requirement rj, both requirements are
selected for development in the next release in case the total development time of both require-
ments, do not violate the first constraint. Otherwise none will be selected.

If the requirement ri has an interaction Implication with a requirement rj, the ri requirement
cannot be selected if the requirement rj has not already been developed. Otherwise, if rj has already
been developed and ri does not violate the first constraint, the requirement ri will be selected for
development in the next release.

If the requirement ri has an interaction Exclusionwith a requirement rj, requirement ri is selected if
the requirement rj is not already selected and does not violate the first constraint requirement ri.

Note that the time complexity of the proposed algorithm is OðNM2Þfor FIS and OðNÞ for greedy
choices. Here N is the number of requirements and M presents the length of intervals created by the
membership functions. Since M is a coefficient, the total time complexity of the proposed algorithm
will be OðNÞ.
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Although many researchers solved the next release problem as a NP-complete problem using
evolutionary algorithms, here we solve this problem based on a different point of view, and by the
help of fuzzy logic, to decide which requirements should develop in the next release. However, as
argued by Alrashoud and Abhari (Alrashoud & Abhari, 2015) using the fuzzy inference system for
solving three-objective problems leads to better results in contrast to evolutionary algorithms.

Experiments

In this section, we will first introduce the datasets used in the experiments. Then, we present the
results of the experiments on the proposed method and compare them.

Test methods and datasets used

All tests were carried out on a system by the specifications of: CPU core i7 1.6GHz, Ram 4GB and OS
win 10 64bit using the MATLAB R2016a. To better investigate the proposed method, a small dataset
and a large dummy dataset were used. Table 3 shows the first dataset. This dataset contains 24
requirements and 5 clients. Satisfaction rate for each requirement has been surveyed by clients. The
score that clients gave to each requirement was in the range of 1 to 5 where 1 is the lowest score and
5 is the highest. Giving a score of 1 to a requirement means that the client has the least interest in
developing this requirement in the next release. The time required for developing each requirement
is determined by the developer team according to the strength and personnel number of each team
(Paredes-Valverde, Del Pilar Salas-Zárate, Colomo-Palacios, Gómez-Berbís, & Valencia-García, 2018).
The cost of developing each requirement is determined by the developer team.

The second dataset is larger and more complex than the first. Table 4 presents this data which
consists of 80 requirements and 5 clients. The interaction between requirements has also been
presented in this dataset. In this dataset, there are 4 interactions of Implication type, 4 interactions of
combination type and 4 interactions of Exclusion type. The existence of these interactions as the type-
2 constraint makes solving the problem more complicated.

In the first and second datasets, clients have different levels of importance for the software
company. This level of importance is used to determine the final satisfaction level of each require-
ment in Formula (1). For example, the final satisfaction level of r1 in dataset 1 is equal to 23 according
to Formulation (1):

b1 ¼
Xm
i¼1

wi � vi1 ¼ 2 � 2þ 1 � 1þ 4 � 2þ 3 � 2þ 4 � 1 ¼ 23

Table 5 shows the importance level of clients in each dataset.

Results and analysis

In this subsection, we will evaluate the proposed algorithm on two datasets. Figure 1 shows the
membership function diagram of the linguistic variables of each of the input and output variables

Table 3. Dataset 1.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24
Client1 2 3 1 4 3 4 2 4 3 2 4 4 4 2 5 5 2 4 2 4 3 2 3 1
Client2 1 2 3 3 2 5 4 2 3 3 4 4 3 1 3 4 1 2 4 2 1 2 3 2
Client3 2 3 4 4 2 4 5 1 4 2 4 3 3 3 5 3 3 3 3 5 4 5 4 2
Client4 2 4 3 5 3 4 3 5 2 5 3 2 3 2 2 3 5 2 3 4 1 1 3 1
Client5 1 2 2 2 2 5 4 3 3 4 2 5 4 3 4 2 4 2 4 3 2 3 4 1
Cost 5 8 3 10 4 9 8 4 5 5 6 7 3 2 8 8 3 4 6 7 9 7 10 1
Time 6 5 4 8 6 7 8 3 6 3 4 8 2 1 7 10 9 6 5 8 6 4 3 2

JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE 967



used to solve dataset 1. The results of the evaluation of the proposed algorithm on dataset 1 are
given in Tables 6 and 7. This dataset has no constraints on interactions between requirements and is
used as a not-so-complex dataset. Table 6 considered the five cost threshold amount constraint and
Table 7 considered the four-time threshold amount constraints. We used the genetic algorithm for
comparisons (Greer & Ruhe, 2004). So far, no research in this area has been carried out considering
the three objectives of satisfaction, time, and cost, and there has been no similar method for
comparison. The genetic algorithm in paper (Greer & Ruhe, 2004) planned the set of requirements
for several releases. Here, our attention is just on planning for the next release. Since the genetic
algorithm is a randomisation-based one, an average of 20 independent runs is presented in the
tables where the results of the proposed algorithm are always the same for each particular
defuzzification.

Table 6 considers five constraints on the cost threshold value. For example, the 80% cost thresh-
old value constraint on this dataset equals 113.6 units. That is, the developer team can use up to
a maximum of 80% of the overall project budget. The overall project budget is equal to the cost of

Table 4. Dataset 2.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20
Client1 2 3 1 1 2 3 3 4 1 3 4 4 3 2 3 2 2 3 4 2
Client2 4 2 3 1 1 2 4 2 2 1 2 3 3 2 1 2 3 3 3 1
Client3 1 3 2 2 3 3 2 3 4 1 3 3 4 1 3 1 2 2 3 3
Client4 3 2 2 0 2 1 3 2 3 2 3 2 1 3 4 2 2 1 3 0
Client5 1 2 3 1 3 2 2 3 3 3 2 2 3 3 2 1 1 4 3 3
Cost 14 19 15 8 17 15 9 11 12 15 14 12 14 20 9 3 10 8 14 4
Time 8 17 14 9 16 12 8 13 9 15 12 7 13 19 7 5 4 9 16 6

r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40

Client1 3 1 4 1 3 3 3 3 4 2 2 3 2 1 2 2 1 3 3 2
Client2 3 3 3 2 1 5 2 2 3 3 1 3 5 2 4 4 3 2 3 1
Client3 2 2 2 3 2 3 3 4 3 3 3 2 4 1 2 3 1 3 1 2
Client4 3 1 2 3 3 3 4 4 3 4 2 2 2 2 3 2 2 3 5 1
Client5 1 2 3 2 3 4 2 3 2 3 2 4 3 3 2 2 3 5 5 1
Cost 5 10 6 7 6 15 9 19 13 12 5 2 17 6 4 14 9 13 18 4
Time 2 7 11 8 10 16 13 17 14 12 2 6 18 10 9 12 9 17 20 4

r41 r42 r43 r44 r45 r46 r47 r48 r49 r50 r51 r52 r53 r54 r55 r56 r57 r58 r59 r60

Client1 2 2 3 1 1 1 2 2 3 3 3 3 4 3 2 1 3 1 3 2
Client2 4 3 1 1 3 2 5 2 4 3 2 2 1 2 1 2 3 2 1 1
Client3 1 3 2 3 3 3 3 3 3 2 3 1 2 3 1 2 2 1 2 3
Client4 3 4 3 3 4 4 1 1 3 5 2 1 3 2 1 3 4 4 2 3
Client5 3 1 1 2 1 2 3 3 2 2 1 3 3 3 1 1 2 1 1 2
Cost 7 16 14 20 13 8 16 12 9 12 5 3 17 8 1 3 14 14 17 8
Time 11 17 14 20 7 9 12 13 14 13 5 3 18 9 1 4 10 13 19 8

r61 r62 r63 r64 r65 r66 r67 r68 r69 r70 r71 r72 r73 r74 r75 r76 r77 r78 r79 r80

Client1 2 2 3 5 4 3 4 3 2 1 1 3 2 3 1 1 2 3 3 1
Client2 1 3 2 3 5 2 4 2 3 2 5 2 1 3 2 4 3 3 1 2
Client3 2 1 2 3 3 1 3 3 3 1 3 1 3 4 2 2 3 4 1 1
Client4 2 2 3 3 3 3 2 3 2 1 2 3 3 2 2 2 2 3 3 1
Client5 4 1 3 4 1 3 2 1 4 2 2 2 4 2 2 3 2 3 2 3
Cost 10 16 15 18 13 15 9 8 20 1 6 9 3 15 4 17 11 19 7 14
Time 16 15 14 8 12 11 9 5 20 3 7 14 4 13 1 16 11 18 7 15
Interactions r41 ) r27 r13 ) r28 r3 ) r29 r34 ) r65 r7 � r66 r14 � r37

r24 � r38 r16 � r39 r21 � r22 r32 � r33 r46 � r47 r65 � r66

Table 5. Clients’ Level of importance.

Clients weights Client1 Client2 Client3 Client4 Client5
Dataset 1 2 1 4 3 4
Dataset 2 3 2 1 5 1
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developing all the proposed requirements. In this experiment, the goal is to select a subset of
requirements so that the total cost of their developing does not exceed the cost threshold value. It
should also meet the following two criteria; firstly, the highest clients satisfaction and, secondly, the
minimum development time.

Figure 1. The membership function diagrams of the linguistic of fuzzy data.

Table 6. Constraint cost threshold.

Defuzzy Benefit Cost Time constraint

FIS sos 935 126 113 Max 90% cost = 127.8
som 954 125 115
sol 944 125 117
centroid 935 126 113
Bisector 954 125 115

GA - 917 127 110.8
FIS sos 845 108 100 Max 80% cost = 113.6

som 851 107 99
sol 854 107 104
centroid 851 107 99
Bisector 851 107 99

GA - 851.3 110 98.2
FIS sos 811 99 94 Max 70% cost = 99.4

som 811 99 94
sol 811 99 94
centroid 811 99 94
Bisector 811 99 94

GA - 793.6 98.4 87.2
FIS sos 716 85 82 Max 60% cost = 85.2

som 720 82 87
sol 725 85 85
centroid 707 85 78
Bisector 707 85 78

GA - 706.5 84.6 76.7
FIS sos 595 70 59 Max 50% cost = 71

som 582 68 64
sol 609 68 71
centroid 618 70 66
Bisector 611 70 67

GA - 616.3 70.8 70.1
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The proposed algorithm was evaluated with five different defuzzifiers. Table 6 shows the best
results of each test with a dark background. The results show that the type of defuzzy function affects
the output of the proposed method. In other words, changing the defuzzy function may change the
selected subset. The proper choice of the defuzzy function depends on the decision-maker’s view. In
all tests, the proposed algorithm has more benefits than the genetic algorithm. In this multi-
objective problem, upper bounds have been chosen for cost and time goals leading to considering
these goals as the constraints. So the benefit goal is in the first priority.

In Table 7, the time threshold value constraint was considered; that is, for example, the developer
team had to deliver the next release of the software for up to the next three months according to its
number of members. This table shows that the genetic algorithm has had better choices within
a one-month time limit. However, as the deadline for development extended, the proposed algo-
rithm has had better choices.

Tables 8 and 9 show the results of experiments on the second dataset. The number of requirements
in this dataset is very high, and there is a constraint of interaction between requirements. In Table 8, five
tests were performed with the constraint of a different cost threshold value. In all of these tests, the
proposed algorithm yieldedmore satisfaction than the genetic one. For example, within 90% cost limit,
the proposed algorithm with the sol defuzzifier could achieve 9% more satisfaction than the GA
algorithm, while the cost and time values are approximately equal. Also within 60% cost limit, the
proposed algorithm could achieve 10% more satisfaction than the GA algorithm. With decreasing the
cost threshold, the satisfaction of the proposed algorithm was also better than the genetic one.

In Figure 2, runtimes of two algorithms in three cost constraints 50%, 70% and 90% are shown. This
comparison is based on dataset 2. In all constraints, the proposed algorithm has less runtime. When
a cost constraint is increased (from 50% to 90%), the proposed algorithm can choose more require-
ments, then its runtime increases. However, the GA runtime decreases in this situation since GA
chromosomes, after any operation, should be validations. Each invalid chromosome should be repaired
to avoid transgression from the considered constraints in the problem. The more tightened the cost
constraint is, the more the chromosomes need repair. Repairs cause the difference in runtime of GA.

In Table 9, four tests are considered with different threshold times. For example, one of the
constraints is the 730-day time limit for the next release. This dataset can be a real example of

Table 7. Constraint time threshold.

Defuzzy Benefit Cost Time constraint

FIS som 935 126 113 Max 4 month = 120 days
mom 954 125 115
lom 944 125 117
centroid 935 126 113
Bisector 954 125 115

GA - 932.25 122.11 118.23
FIS som 788 94 88 Max 3 month = 90 days

mom 720 82 87
lom 775 95 88
centroid 788 94 88
Bisector 788 94 88

GA - 787.1 97.13 88.4
FIS som 554 66 56 Max 2 month = 60 days

mom 527 60 57
lom 522 57 57
centroid 568 63 58
Bisector 568 63 58

GA - 566.4 73.71 58.3
FIS som 331 38 26 Max 1 month = 30 days

mom 319 31 27
lom 319 31 27
centroid 322 32 26
Bisector 319 31 27

GA - 350.2 41.33 28.6
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Table 8. Constraint cost threshold.

Defuzzy Benefit Cost Time constraint

FIS sos 2358 791 785 Max 90% cost = 795.6
som 2329 787 782
sol 2367 789 788
centroid 2346 785 782
Bisector 2346 785 782

GA - 2169.8 787.2 785.9
FIS sos 2193 700 693 Max 80% cost = 707.2

som 2194 707 701
sol 2211 700 704
centroid 2180 702 691
Bisector 2175 700 692

GA - 2024.2 699.5 702.1
FIS sos 2010 611 611 Max 70% cost = 618.8

som 2006 617 608
sol 2026 612 611
centroid 1996 617 606
Bisector 1991 617 611

GA - 1835.6 610.7 606.1
FIS sos 1833 528 523 Max 60% cost = 530.4

som 1833 528 523
sol 1824 529 529
centroid 1831 525 524
Bisector 1831 525 524

GA - 1659.4 522.6 522.6
FIS sos 1617 439 446 Max 50% cost = 442.0

som 1570 441 442
sol 1544 439 445
centroid 1653 440 447
Bisector 1653 440 447

GA - 1477.4 436.2 444.8

Table 9. Constraint time threshold.

Defuzzy Benefit Cost Time constraint

FIS som 2240 725 721 Max 2 years = 730 days
Mom 2240 725 721
Lom 2256 726 723
centroid 2231 728 719
Bisector 2226 726 720

GA - 2094.6 727.2 727.8
FIS som 1859 546 539 Max 1.5 Years = 547 days

mom 1866 543 537
lom 1892 551 542
centroid 1862 542 542
Bisector 1862 542 542

GA - 1715.8 536.4 540.4
FIS som 1362 343 356 Max 1 year = 365 days

mom 1310 353 358
lom 1284 366 357
centroid 1389 343 354
Bisector 1389 343 354

GA - 1252.8 353.1 355.7
FIS som 839 190 179 Max 6 month = 183 days

mom 776 189 178
lom 778 200 183
centroid 796 159 183
Bisector 796 159 183

GA - 737.3 182.4 178.2
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large projects such as the introduction of the next service pack of an operating system. In these
tests, the proposed algorithm has had better choices than the genetic one. For example, within
the 730-day time limit, the proposed algorithm with the lom defuzzifier could choose a subset
of requirements which could yield a satisfaction rate equal to 2256 in 723 days at a 726-unit
cost, while the genetic algorithm yields a lower satisfaction rate than the proposed one in
728 days on average at a cost of about 727 units. Another example of Table 9, within the
1-year time limit, the proposed algorithm with the centroid and bisector defuzzifier could
choose a subset of requirements which could yield a satisfaction rate equal to 1389 in
354 days at a 343-unit cost. Whereas the genetic algorithm achieves a satisfaction rate
1252.8, in 356 days on average at a cost of about 353 units.

The runtimes in the presence of the four time constraints have been given in Figure 3. In all
constraints, the proposed algorithm has shorter runtime. For example, for the time threshold of
one year, the proposed algorithm is 37% faster than the GA.

Remark 1: It is worth noting that the output of the proposed method, similar to the existing
methods of solving single objective problems, is a unique optimal solution. In fact, the development
team has decided to get a unique optimal solution and not a set of non-dominated solutions
according to the proposed approach. For those problems with a unique optimal solution, it is not
possible to calculate the hypervolume and Spread (Quality) indicator.

Sensitivity analysis

In this subsection, we investigate the sensitivity analysis on the second dataset for verifying the
proposed algorithm. In the case that a cost limit 50% is considered for this data set, the following
requirement set is selected for development in the next release:

Figure 2. Comparison of runtimes in the presence of the cost constraints.
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Kc ¼ fr1; r11; r13; r14; r16; r17; r18; r20; r21; r23; r24; r25; r27; r29; r30; r31; r32; r35; r36; r37; r38; r40; r41; r43;
r45; r46; r49; r50; r51; r52; r55; r56; r57; r58; r60; r64; r65; r68; r70; r71; r72; r73; r75; r77; r79g

The satisfaction amount of set kc evaluated by LOM is 1544 units. The development cost of this set is
439 units, and the development time is 445 units. If the cost of the requirement r1 is increased by
10%, then the requirements r1 and r46 are deleted from the set kc and the requirements r9 and r12 are
added. In this condition, the satisfaction of the new set is 1543 units, the cost of developing will be
441 units, and the development time will be 444 units. If the cost of the requirement r1 decreases by
10%, then the requirement r46 of the set kc is deleted and the requirement r9 is added. In this case,
the satisfaction of the new set is 1541 units, while the development cost will be 441.6 units, and the
development time will be 445 units.

In the case that a time limit 0.5 year is considered for the second data set, the following
requirement set is selected for development in the next release:

KT ¼ fr1; r11; r13; r14; r16; r17; r21; r29; r31; r32; r35; r37; r40; r50; r51; r52; r55; r56; r64; r68; r70; r71; r73; r75g
The satisfaction amount of KT evaluated by LOM is 778 units; the development cost is 200 units
and the development time is183 units. If development time of the requirement r1 increases by
10%, then the requirement r71 will be deleted from KT and the requirement r20 will be added to
KT . The satisfaction of the new set is 764 units; the development cost is 198 units and the
development time is 182.2 units. If development time of the requirement r1 decreases about
10%, the set KT will not change, and only the development time of this set will decrease from
183 units to 182.2 units.

In the case that a cost limit of 90% is considered for the second data set, the requirement set Zc is
selected for development in the next release which includes the requirement r12. The Zc set
evaluated based on LOM will have a satisfaction of 2211, a cost of 700 units and a development
time of 704 units. If the requirement cost r12 increases by 10%, the Zc set will not change. But if the
requirement cost r12 decreases by 10%, the requirement r4 will be deleted from the Zc set and the

Figure 3. Comparison of runtimes in the presence of time constraints.
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requirement r47 will be added. The satisfaction of the new set is 2230 units; the cost of development
is 706.8 units, and the development time will be 707 units.

Conclusions

In this paper, the NRP problem was examined. Here, three objectives were considered, namely
development time, development cost, and satisfaction. The presence of rivals in the market, the
reduction of the development time of each release and the cost savings of the software company
all impose a reduction of development costs on the company. However, increasing client
satisfaction with the product is also an important objective for companies. Despite the three
objectives, it is very difficult to select a subset of requirements for development in the next
release. In this paper, we introduced an algorithm that uses the fuzzy inference system and
greedy choices based on constraints to determine the suitability of each requirement for devel-
opment in the next release. The purpose of implementing the proposed algorithm is to help in
deciding on the selection of an optimal subset of requirements for development in the next
release. Instead of the direct choices of the members of the developer team, the use of such
algorithms reduces human selection errors. The quality of the proposed algorithm was evaluated
on two datasets with different complexities. The first dataset was relatively small, while
the second was large and complex. The results of the proposed algorithm were compared
with those of the genetic algorithm. The results of the proposed algorithm, with all constraints
considered, could provide much more satisfaction compared to the genetic algorithm. The results
also showed that in the case of larger problems, the proposed algorithm has a better result in
contrast to the genetic algorithm. Moreover, scalability is one of the advantages of the proposed
algorithm. However, in the case that the development team allocates wrong cost and time values
to the requirement, the total cost of the software or its delivery time will not result according to
the predicated programm. Also, allocation of crisp numbers to satisfaction of requirements can
be one of the limitations of the proposed method. In fact, during the production of the software,
clients’ satisfaction from the requirements may be changed, so the allocation of fuzzy numbers
instead of crisp numbers can alleviate this problem. In the future, we will attempt to modify the
proposed algorithm to overcome these limitations.
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