
A
U

TH
O

R
 C

O
P

Y

Journal of Intelligent & Fuzzy Systems 40 (2021) 5027–5041
DOI:10.3233/JIFS-201759
IOS Press

5027

A novel approach for the next software
release using a binary artificial algae
algorithm

Poria Pirozmanda, Ali Ebrahimnejadb,∗, Hamidreza Alrezaamiric and Homayun Motamenid
aSchool of Computer and Software, Dalian Neusoft University of Information, Dalian, China
bDepartment of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
cYoung Researchers and Elite Club, Babol Branch, Islamic Azad University, Babol, Iran
dDepartment of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran

Abstract. In software incremental development methodology, the product develops in several releases. In each release, one set
of the requirements is suggested for development. The development team must select a subset of the proposed requirements for
development in the next release such that by consideration the limitation of the problem provides the highest satisfaction to the
customers and the lowest cost to the company. This problem is known as the next release problem. In complex projects where
the number of requirements is high, development teams cannot choose an optimized subset of the requirements by traditional
methods, so an intelligent algorithm is required to help in the decision-making process. The main contributions of this study
are fivefold: (1) The customer satisfaction and the cost of every requirement are determined by use of fuzzy numbers because
of the possible changing of the customers’ priorities during the product development period; (2) An improved approximate
approach is suggested for summing fuzzy numbers of different kinds, (3) A new metaheuristic algorithm namely the Binary
Artificial Algae Algorithm is used for choosing an optimized subset of requirements, (4) Experiments performed on two
fuzzy datasets confirm that the resulted subsets from the suggested algorithm are free of human mistake and can be a great
guidance to development teams in making decisions.

Keywords: Next release problem, software requirements, fuzzy numbers, binary artificial algae algorithm

1. Introduction

In software engineering, one of the first steps
towards software development is the stage of elic-
itation and determination of requirements. These
requirements are usually elicited from clients, prod-
uct development teams, and market conditions [1].
After elicitation, a list of requirements for product
development is specified. In software engineering,

∗Corresponding author. Ali Ebrahimnejad, Department
of Mathematics, Qaemshahr Branch, Islamic Azad Uni-
versity, Qaemshahr, Iran. E-mail: aemarzoun@gmail.com;
a.ebrahimnejad@qaemiau.ac.ir

there are many methodologies for software devel-
opment. One of the most popular methodologies is
the incremental development method, which is very
suitable for large projects. In the incremental devel-
opment method, software is developed in several
releases. The software company is confronted with
a set of requirements in every release that need to
be developed. Due to problems such as project bud-
get constraints, proximity of project delivery time,
technical problems, and inherent conflicts between
requirements, it is impossible to develop all the pro-
posed requirements [2].

In large projects, the choice of an optimal sub-
set of the requirements is traditionally very difficult

ISSN 1064-1246/$35.00 © 2021 – IOS Press. All rights reserved.

mailto:aemarzoun@gmail.com
mailto:a.ebrahimnejad@qaemiau.ac.ir

A
U

TH
O

R
 C

O
P

Y

5028 P. Pirozmand et al. / A novel approach for the next software release using a binary artificial algae algorithm

and prone to error. For this reason, in order to help
the development team with easier decision making,
it is necessary to have a method for determining an
optimal subset of the requirements. The problem of
selecting an optimal subset of requirements is called
the Next Release Problem (NRP) [3]. In this problem,
the goal is to select an optimal subset of requirements
that can satisfy the constraints of the problem so that
it could create, with lowest cost, the highest degree
of satisfaction for users. Different constraints could
be considered for this problem. Some of these con-
straints are inherent while others are non-essential.
One of the inherent constraints of this problem is the
interaction between the requirements themselves. For
example, two of the requirements for development
may complement each other and two other require-
ments may conflict with one another. Sagrado et al.
[4] categorized the interaction between requirements,
as one of the constraints of the problem, in four gen-
eral categories.

Implication ri ⇒ rj . If the requirement ri is not devel-
oped, the requirement rj cannot be developed either.
Combination ri ⊕ rj . A requirement ri cannot be cho-
sen separately from a requirement rj .
Exclusion ri ⊗ rj . A requirement ri cannot be chosen
together with a requirement rj .
Modification. The development of the requirement
ri implies that some other requirements change their
satisfaction or implementation effort.

The first three interactions are applied in projects
as explicit interactions. However, the fourth inter-
action, being implicit in nature, is usually ignored.
Non-essential restrictions such as the product deliv-
ery time or the maximum allowable cost of product
development are usually defined by manufacturing
companies. The existence of these constraints and the
two conflicting goals (increasing user satisfaction and
reducing the cost of product development) place this
problem in the NP-hard category. In spite of the com-
plexity of the problem, metaheuristic algorithms can
provide a quasi-optimal solution to this problem in a
short time.

In each release, the development team should
assign a value to satisfaction and another to imple-
mentation cost for each of the requirements for
development [5, 6]. The level of satisfaction with any
proposed requirement for development in the next
release is asked from the users through a question-
naire and a survey. Because of different tastes and
different scoring for each user requirement, assign-
ing a crisp number as the level of satisfaction with

each requirement is not sensible, while the allocation
of a normal or triangular fuzzy number can give a
much better view of the spectrum. For example, sup-
pose four customers participate in a questionnaire and
each one chooses a number in the range of [1, 10] as
the requirement satisfaction score. If the amount of
requirement satisfaction is given by a crisp number,
the average of the selected numbers is computed. If
customers choose 4, 3, 4, 5 or 3, 3, 9, 1, the aver-
age satisfaction of both groups is 4. This method
is not acceptable for situations that the customers
are uncertain about assigning an accurate satisfac-
tion score. In fact, in such situations the satisfaction
scores are expressed by fuzzy statements “very close
to 4”, “approximately 3”, “near to five” and so on.
Hence, they can be conceptualized by certain “appro-
priate” fuzzy numbers. Therefore, the development
team determines a suitable fuzzy number accord-
ing to the users’ scores as the satisfaction level of
each requirement [7]. Moreover, sometime the satis-
faction levels are assessed by customers using fuzzy
linguistic terms such as Excellent, Very Good, Good,
Average, Poor and Very Poor and then the assess-
ment results by customers are weighted and averaged.
Therefore, there is a need to study the behavior of
the set for these variables also. Furthermore, in our
real-life situations, various social and natural phe-
nomena belong to the normal distribution which has
the continuous higher derivative of its membership
function. Hence, in the presented study, the satisfac-
tion levels of customers are represented in terms of
trapezoidal fuzzy numbers and normal fuzzy num-
bers. Also, given the time and expertise necessary
to implement each requirement as well as unfore-
seen problems during development, they also define
a suitable fuzzy number as developing cost of each
requirement.

In previous papers, the allocation of these values
was done in the form of crisp, which, for the rea-
sons given, is not a logical and practical approach [8,
9]. The existence of different conditions makes the
development team consider different types of fuzzy
numbers for the cost and satisfaction level of the
requirements. Since the cost and satisfaction of a sub-
set of the proposed requirements are obtained from
the addition of every single one of them, the sum
of fuzzy numbers of different types together creates
another challenge.

In this paper, we use the least squares model pro-
posed by Hassanzadeh et al. [10] to sum different
types of fuzzy numbers together. We also use a Binary
Artificial Alga Algorithm [11] (BAAA) in a bound

A
U

TH
O

R
 C

O
P

Y

P. Pirozmand et al. / A novel approach for the next software release using a binary artificial algae algorithm 5029

fashion to find the optimal subset of the require-
ments. The Artificial Alga Algorithm is a powerful
metaheuristic algorithm for solving continuous opti-
mization problems [12]. Korkmaz and Kiran [11]
proposed the binary version of this algorithm which
can solve discrete optimization problems such as the
NRP problem very well.

The challenges that currently exist in solving the
next release problem are summarized as below:

• Introducing an intelligent algorithm to select an
optimal subset of the proposed requirements.
This algorithm should achieve the highest level
of customer satisfaction and the lowest cost for
the company while taking into account all the
limitations of the problem. To resolve this issue
we use BAAA to find the optimal subset of the
requirements. This algorithm is a new and pow-
erful metaheuristic algorithm that could solve
many complex engineering problems. In NRP,
if the set chosen by the algorithm is not the best,
it will cause dissatisfaction to the customers and
a decrease in the company’s credit.

• Because the problem under consideration is an
NP-hard problem, the execution time of the algo-
rithm can be one of the challenges for solving
the problem. Therefore, the algorithm should
provide acceptable solutions in a short time.
To address this issue, we use BAAA that is an
agile algorithm with acceptable run time and use
the improved least squares model that extremely
reduces computation time.

• Most often, customer priority changes during
product development. Assigning fuzzy num-
bers instead of crisp numbers for satisfaction of
requirements will alleviate this problem. On the
other hand, the use of different kinds of fuzzy
numbers leads to a better mapping of customers’
views. In this situation we face the challenge of
summing up different kinds of fuzzy numbers.
To address this issue, we use an approximate
approach for summing up two fuzzy numbers
with different membership functions.

On such motivation basis, the main contributions of
this study are summarized as follows: (1) In contrast
to the existing approaches that uses crisp numbers
or fuzzy numbers with the same membership func-
tions to express customers’ opinions, according to the
proposed approach in this study fuzzy numbers with
different membership functions are used to express
customers’ opinions in the case that their priorities
are changed during product development, (2) To cal-

culate the sum of different fuzzy numbers, we have
improved an approximate summation method that
significantly reduces the computational load, and (3)
To the best of our knowledge, this study is the first
attempt for solving the NRP using BAAA algorithm
as a powerful meta-heuristic algorithm.

The remainder of the article is organized as fol-
lows. Section 2 gives a detailed account of the works
done in this area. Section 3 describes the fuzzy con-
cepts required in the present paper. Section 4 explores
the proposed method for solving the next release
problem. Section 5 reports and analyzes the results
of the tests done on two fuzzy datasets. Section 6
concludes the paper and indicates future works.

2. Related works

Different methods have so far been introduced to
solve the next release problem [13, 14]. Most of
the ways introduced for solving this problem fall
into two general categories. The first category con-
sists of the Software Engineering Decision Support
(SEDS) methods [15]. SEDS is a research field in
which decision-making algorithms are used to help
solve problems in the field of software engineering.
This category includes methods such as QFD, AHP
and fuzzy logic that usually focus on prioritizing and
ranking the requirements.

The second category consists of the Search Based
Software Engineering (SBSE) methods. SBSE is a
research field in which search based optimization
algorithms are used to solve problems in the field
of software engineering [16]. Optimization methods
such as linear programming, heuristic and meta-
heuristic algorithms belong to this category.

Sadiq and Jain [17] used a fuzzy method for
eliciting goal-based requirements and prioritizing
them. This method was formed out of a combination
of fuzzy analytical hierarchy process and weighted
relationships. Chopra et al. [18] used the AHP
method based on cost-value prioritization techniques
in several large projects. The authors of this paper
prioritized both the functional and non- functional
requirements [18]. Ramzan et al. [19] introduced the
concept of requirement value for prioritizing require-
ments. In that paper, an intelligent technique was
used for prioritizing the requirements based on a
multi-level value using fuzzy logic [19]. Alrashoud
and Abhari [20] used the Fuzzy Inference Engine to
overcome the uncertainty of the problem and priori-
tize the requirements. The authors used three criteria,

A
U

TH
O

R
 C

O
P

Y

5030 P. Pirozmand et al. / A novel approach for the next software release using a binary artificial algae algorithm

namely risk, value of each requirement and effort,
for decision-making. Alrashoud and Abhari [21] used
ANFIS primarily to create membership functions and
fuzzy rules in order to plan for development in the
next release. Then, they used the fuzzy inference
system to solve the problem. Authors of this paper
considered three criteria, namely risk, stakeholders
satisfaction and availability of resources. Lai et al.
[22] proposed a new way to rank client require-
ments with respect to the competitive market. In that
method, fuzzy QFD was used. In addition to client
feedback, the authors also considered the products
of rival software companies to rank the require-
ments. Souza et al. [23] presented an optimal release
policy for multi release software system has been pro-
posed by taking into consideration the test as well as
the operational phase. Veerapen et al. [24] used the
integer linear programming method in two-objective
and single-objective models. The authors could find
the exact solution to the single-objective problem
and small multi-objective problems. However, in
large-scale multi-objective problems, their proposed
algorithm had a very high runtime. Mougouei [25]
proposed a linear programming model for selecting
requirements according to the interactions between
them. In his paper, he also presented a technique
for modeling the interaction between requirements
by a graph. Araújo et al. [26] proposed an architec-
ture based on machine learning and genetic algorithm
to solve this problem. Jiang et al. [27] used a com-
bination of the ACO algorithm with a local search
algorithm to solve the next release problem. Masadeh
et al. [28] used the gray wolf optimization algorithm
to select the best subset of the proposed require-
ments. Sagrado et al. [4] used the ACS algorithm
as a two-objective (increased satisfaction and cost
reduction). In that paper, for the first time, three types
of interactions between requirements were defined
and considered in the implementation. Del Águila
et al. [29] introduced a requirements management
tool that uses artificial intelligence algorithms. This
tool uses three algorithms Greedy Randomized Adap-
tive Search Procedure (GRASP), Ant Colony System
(ACS) and NSGA II to solve the next release prob-
lem. Chaves et al. [30] used the multi-objective
differential evolution algorithm, the multi-objective
TLBO algorithm [8], and the multi-objective bee
colony optimization algorithm [9], respectively to
solve the next release problem. In all three of these
papers, two datasets with crisp values and three types
of interactions between requirements were consid-
ered. Pitangueira et al. [31] proposed a risk-aware

multi-objective method to solve the next release prob-
lem aimed at reducing the risk of discontent among
stakeholders. The authors used the NSGA II algo-
rithm. Nayebi and Ruhe [32] considered two criteria,
namely client satisfaction and dissatisfaction, for the
first time and introduced the Asymmetric Release
Planning (ARP) concept. Their goal was to select
a subset of requirements so that their development
would yield the highest degree of satisfaction, and
lack of development of the rest of the requirements
would create the least amount of dissatisfaction. To
explain the ARP concept, they stated that the sat-
isfaction level achieved by the development of a
requirement does not correspond to the level of dissat-
isfaction achieved by a lack of development, and vice
versa. Alrezaamiri et al. [7] introduced a fuzzy arti-
ficial chemical reaction optimization algorithm for
solving the next release problem. The authors used
fuzzy datasets for the first time. All datasets values
were triangular fuzzy numbers. The authors reduced
the uncertainty of the data by using the fuzzy trian-
gular numbers instead of the crisp numbers [7].

3. Fuzzy concepts

In this section, we review some primary concepts
of fuzzy sets [33–41].

Definition 1: Suppose X be a set and define the fuzzy
set Ã in X by its membership function μÃ : X →
[0, 1], where a real number μÃ(x) is assigned to each
element x ∈ X in the interval [0, 1].

Definition 2: A normal fuzzy number is represented
by Ã = (m , σ), where m is the median and σ is
the standard deviation. The membership function Ã,
defined by the formula (1). Figure 1.a shows a normal
fuzzy number with values (4, 3).

μÃ(x) = e−(x−m
σ

)2
, x ∈ R (1)

Definition 3: A triangular fuzzy number is rep-
resented in the form of Ã = (a1, a2, a3) and with
the membership function of formula (2). Figure 1.b
shows a triangular fuzzy number with values (2, 4,
5).

μÃ(x) =
⎧⎨
⎩

x− a1
a2−a1

, a1 ≤ x ≤ a2,

a3−x
a3−a2

, a2 ≤ x ≤ a3,
(2)

Definition 4: A trapezoidal fuzzy number Ã is
represented by Ã = (a1 , a2, a3, a4), with the mem-

A
U

TH
O

R
 C

O
P

Y

P. Pirozmand et al. / A novel approach for the next software release using a binary artificial algae algorithm 5031

A B C

Fig. 1. (a) A normal fuzzy number. (b) A triangular fuzzy number. (c) A trapezoidal fuzzy number.

bership function of formula (3). Figure 1.c shows a
trapezoidal fuzzy number with values (1, 3, 4, 5). The
trapezoidal fuzzy number can be a triangular fuzzy
number if a2 = a3.

μÃ(x) =

⎧⎪⎪⎨
⎪⎪⎩

x− a1
a2−a1

, a1 ≤ x ≤ a2,

1, a2 ≤ x ≤ a3,
a4−x
a4−a3

, a3 ≤ x ≤ a4.

(3)

The fuzzy addition on two trapezoidal fuzzy num-
bers Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4) is
given as:

Ã+̃B̃ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4) (4)

The fuzzy addition on two normal fuzzy numbers
Ã = (m1, σ1) and B̃ = (m2, σ2) is given as:

Ã+̃B̃ = (m1 + m2, σ1 + σ2) (5)

Definition 5: The α -cut of a fuzzy set Ã is defined as
a crisp set

[
Ã

]
α

in which the membership degrees
of its elements exceed the level α, i.e.

[
Ã

]
α

={
x ∈ X; μÃ(x) ≥ α

} = [
ÃL

α , ÃR
α

]
.

Definition 6: The α –cut of the trapezoidal fuzzy
number Ã = (a1, a2, a3, a4) is given by

[
Ã

]
α

=[
ÃL

α , ÃR
α

] = [(a2 − a1)α + a1, a4 − (a4 − a3)α].

Definition 7: The α –cut of the normal fuzzy num-
ber Ã = (m , σ) is given by

[
Ã

]
α

= [
ÃL

α , ÃR
α

] =[
m − σ

√− ln(α), m + σ
√− ln(α)

]
.

The sum of two fuzzy numbers of the same type is
easily done at time order O(1). However, the sum of
two fuzzy numbers of different types cannot be easily

accomplished and approximate sum methods should
be used.

3.1. The improved fuzzy approximate sum
operator

Hassanzadeh et al. [10], proposed a method for
approximating the sum of normal and trapezoidal
fuzzy numbers. In this model, approximate the sum
and its corresponding membership function by divid-
ing the α –interval, [0, 1], into n subintervals and
letting α0 = 0 ; αi = αi−1 + �αi ; �αi = 1

n
; and

n = 1, 2, . . . , n.

Suppose Ã = (a1 , a2, a3, a4) be trapezoidal
fuzzy number and B̃ = (m , σ) be normal fuzzy num-
ber. Given αi ∈ (0, 1], 1 ≤ i ≤ n, the αi –cut sum
of these fuzzy numbers using Definitions 6 and 7 is
obtained as follows:[
C̃

]
αi

= [
C̃L

αi
, C̃R

αi

] = [
ÃL

αi
+ B̃L

αi
, ÃR

αi
+ B̃R

αi

] =[
(a2 − a1)αi + a1 + m − σ

√
− ln(αi),

a4 − (a4 − a3)αi + m + σ
√

− ln(αi)
]

(6)
Formula (6) can be used to obtain n points for

C̃L
αi

and n points for C̃R
αi

using αi, 1 ≤ i ≤ n. In this
method, approximated the membership function of
the sum using the resulting points via the α –cut
and Crammer’s approach for fitting an exponential
membership function for the sum. Let xi = C̃R

αi
and

yi = μ(C̃R
αi

), and for n points (xi, yi), consider the fit-

ting model to be y = e
−
(

x−λ
β

)2

. They proposed a least
squares model to approximate the right membership
function for the considered addition, and determined
the unknown parameters λ and β as formulas (7) and

A
U

TH
O

R
 C

O
P

Y

5032 P. Pirozmand et al. / A novel approach for the next software release using a binary artificial algae algorithm

(8) [10, 41]:

β =
n

∑
i

(
xi × √− ln yi

) − ∑
i

√− ln yi × ∑
i

xi

−n
∑
i

√− ln yi − ∑
i

√− ln yi × ∑
i

√− ln yi

(7)

λ =

∑
i

ln yi

(
−

∑
i

xi

)
−

∑
i

(
xi×

√
− ln yi

)
×

∑
i

√
− ln yi

−n
∑

i

√
− ln yi − ∑

i

√
− ln yi ×

∑
i

√
− ln yi

(8)

Now, let xi = C̃L
αi

and yi = μ(C̃L
αi

), and consider

the fitting model y = e
−
(

x−λ′
β′

)2

. The least squares
model for approximating the left membership func-
tion of the considered addition results in the unknown
parameters λ′ and β′ as follows:

β′ =
n

∑
i

(
xi × √− ln yi

) − ∑
i

√− ln yi × ∑
i

xi

n
∑
i

√
ln yi + ∑

i

√− ln yi × ∑
i

√− ln yi

(9)

λ′ =

∑
i

ln yi ×
∑

i

xi +
∑

i

(
xi ×

√
− ln yi

)
×

∑
i

√
− ln yi

n
∑

i

√
ln yi +

∑
i

√
− ln yi ×

∑
i

√
− ln yi

(10)

Hence, the approximate membership function for
the approximating sum of trapezoidal and normal
fuzzy numbers is given as formula (11):

μc̃(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e
−(λ′−x

β′)2

, x < λ′,
1, λ′ ≤ x ≤ λ,

e
−(x−λ

β
)2
, x > λ.

(11)

3.2. Distance between fuzzy numbers

The following formula [10, 41] can be used to
compare two fuzzy numbers:

Dp,q(Ã, B̃) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
(1 − q)

∫ 1

0

∣∣A−
α − B−

α

∣∣p dα + q

∫ 1

0

∣∣A+
α − B+

α

∣∣p dα

]
, p < ∞

(12)
(1 − q) sup

0<α≤1

∣∣A−
α − B−

α

∣∣ + q inf
0<α≤1

∣∣A+
α − B+

α

∣∣ , p = ∞

where the parameter p symbolizes the preference
weight assigned to the end points of the support. If the
expert has no priority, D

p, 1
2

is used. The parameter q

determines the analytical properties of Dp,q. For two

fuzzy numbers Ã and B̃, Dp,q is given by:

Dp,q(Ã, B̃) =
[

(1 − q)
n∑

i=1

∣∣A−
αi

− B−
αi

∣∣p

+q

n∑
i=1

∣∣A+
αi

− B+
αi

∣∣p] 1
p

(13)

If q = 1
2 and p = 2, we use the following formula:

D2, 1
2
(Ã, B̃) =√√√√[
1

2

n∑
i=1

|A−
αi − B−

αi |2 + 1

2

n∑
i=1

|A+
αi − B+

αi |2
]
(14)

To compare two fuzzy numbers Ã and B̃ using
the αi -cuts, we compare them to 0̃ = (0, 0, ..., 0).
In fact, formula (14) is used to compute D2, 1

2
(Ã, 0̃)

and D2, 1
2
(B̃, 0̃). We can conclude that Ã ≺− B̃ if

D2, 1
2
(Ã, 0̃) ≤ D2, 1

2
(B̃, 0̃).

4. Artificial Alga Algorithm to solve the next
release problem

In this section, we first introduce the Artifi-
cial Alga Algorithm. Then, we will solve the next
release problem with different fuzzy arcs using this
algorithm.

4.1. Binary Artificial Alga Algorithm (BAAA)

The Artificial Algae Algorithm (AAA) is an algo-
rithm that inspired by behavior of the algae colonies.
The binary artificial alga algorithm first begins by
adjusting the parameter values and generating the
initial population. An alga structure is defined to
represent the solutions of the problem. The fitness
value of each alga is calculated and maintained in

the colony. The algorithm has a specified number
of iterations, and iterations continue until the ter-
mination condition is reached. An update operator
is applied to the algae in each iteration. The algo-
rithm has two types of updating mechanisms. The

A
U

TH
O

R
 C

O
P

Y

P. Pirozmand et al. / A novel approach for the next software release using a binary artificial algae algorithm 5033

Fig. 2. BAAA flowchart.

first kind is logic XOR and the second kind is based
on stigmergic behavior.

After each update, if the fitness value of the new
alga was more favorable than that of the old alga, it
replaces the old one. Otherwise, the algorithm con-
tinues with the same old alga. After the algorithm
reaches the end, the most desirable alga is selected as
the solution to the problem [42]. Figure 2 shows the
(BAAA) flowchart.

4.2. The BAAA for solving next release problem
with fuzzy arc lengths

In this subsection, we describe an encoding scheme
and initialization for the BAAA. Then, we express our
new idea for calculating the fitness of each individual.
BAAA updates operators including the logic XOR
and stigmergic behavior.

4.2.1. BAAA encoding scheme and population
initialization

In the NRP problem, each solution is encoded as
an n-dimensional vector in which the i-th cell on the

Fig. 3. Structure an alga.

vector corresponds to the i-th requirement in the R set,
where i = 1, 2, 3, ..., n. In Fig. 3, a solution is given.
In each solution, each requirement that is selected for
development in the next release accepts value 1, or
otherwise 0 in its corresponding cell.

Initial colony of the algorithm are generating
according to formula (15). Here, randi,j is a random
number between [0,1] and Xi,j is the j-th dimension
of the i-th algae colony.

Xi,j =
⎧⎨
⎩

0 , if (randi,j < 0.5)

1, otherwise

i = 1, 2, ..., n and j = 1, 2, ..., d (15)

After generating the initial colony, in each stage of
the algorithm, in case the algae values violate the con-

A
U

TH
O

R
 C

O
P

Y

5034 P. Pirozmand et al. / A novel approach for the next software release using a binary artificial algae algorithm

straints defined in the problem, that alga is modified
in a validation function.

4.2.2. Fitness evaluation
In this problem, each alga is a solution to the NRP

problem. In fact, each solution shows the selection of
a subset of the proposed requirements (m require-
ments). The number of m related to the selected
requirement in each alga is a value between 0 and
n (0 ≤ m ≤ n). The cost and satisfaction level of
each alga is obtained from the sum of each cost
value and the individual satisfaction values of the
selected requirements. To add these fuzzy numbers
together, we used the least squares model proposed
by Hassanzadeh et al. [10] optimally. Hassanzadeh et
al. used m − 1 approximations in accordance with
formulas (6-11) to add m various fuzzy numbers
(trapezoidal and normal numbers) together. That is,
they selected two fuzzy numbers (regardless of the
fuzzy type of those two numbers) at first, and sub-
jected the two numbers to alpha-cutting. Then, they
used the sum of alpha-cuts on the left and right sides
of the two numbers for approximation. Subsequently,
they approximated the number obtained from the first
approximation in the same way using the third fuzzy
number. These approximations continued until the
last fuzzy number was reached. Finally, formula (14)
was used to calculate the amount of fitness resulting
from the approximation of the entire fuzzy numbers.

In this study, an interesting idea was used to dra-
matically reduce the time it takes to perform these
calculations. In our proposed approach for each alga,
first, the trapezoidal numbers of requirements are
added together in O(1) according to formula (4).
Then, the values of the normal numbers are added
together in O(1) according to formula (5). In the end,
to calculate the total amount of satisfaction or cost, we
obtain the approximate sum (according to formulas
6-11) of the sum of trapezoidal numbers and the sum
of normal numbers. Finally, we use formula (14) to
calculate the fitness of the approximate sum. In fact,
unlike Hassanzadeh et al. who used m − 1 approxi-
mations to add m fuzzy numbers of different types,
we only use 1 approximation.

4.2.3. Logic XOR operator
Algorithm have two kind of update mechanism.

First approach uses logic XOR operator for produc-
ing children solutions and second approach is based
on stigmergic behavior. Formula (16) is utilized for
determining which update mechanism is used for

obtain a candidate solution [11].

update rule =

⎧⎪⎪⎨
⎪⎪⎩

log ic XOR , if (rand < UMSP)

and C01(t) /= 0 and C10(t) /= 0

stigmergic, otherwise

(16)
Where, UMSP is the update mechanism selection

probability as a control parameter and rand is a ran-
dom number between [0,1]. C01 and C10 are integer
numbers. In logic XOR update, for each algae colony,
at the first step select a neighbor via random choice.
At the second step, randomly select three alga dimen-
sion of colony. At the third step, modify the colony
using formula (17).

T = Yi

Tj = Yi,j ⊕ [ϕ (Yi,j ⊕ Yz,j)]

Tk = Yi,k ⊕ [ϕ (Yi,k ⊕ Yz,k)]

Tl = Yi,l ⊕ [ϕ (Yi,l ⊕ Yz,l)]

i, z ∈ {1, 2, ..., SizeColony}, i /= z,

j, k, l ∈ {1, 2, ..., n} , j /= k /= l

(17)

where, T is the child solution, Y is the individual in
the colony, ϕ is the logic NOT operator with 50%
probability, ⊕ is the logic XOR operator, and n is
the number of requirements. Therefore, Tj, Tk, Tl

sequential determines the j-th, k-th and l-th require-
ment of the child solution. After update, the fitness
value of the child solution is compared with the par-
ent. If fitness value of the child solution is better
than the parent, the child solution is replaced to the
parent alga and the information to be used for the
second update mechanism is obtained at this stage
[11]. Algae of parent and child solutions are com-
pared one by one and changed decision variables are
determined. If the parent value of the decision vari-
able is 1 and the child value of the decision variable
is 0, the C10 counter is addition by 1. On the contrary,
if the parent value of the decision variable is 0 and
the child value of the decision variable is 1, the C01
counter is addition by 1. In other words, C10 indicates
the count of changed value 1 to 0 and C01 indicates
the count of altered value 0 to 1. C01 and C10 counters
are calculated given as formulas (18) and (19):

C01(t + 1) =

⎧⎪⎪⎨
⎪⎪⎩

C01(t) + 1, fitness(T) < fitness(Yi)

and Yi,d = 0 and Td = 1

C01(t), otherwise

(18)

A
U

TH
O

R
 C

O
P

Y

P. Pirozmand et al. / A novel approach for the next software release using a binary artificial algae algorithm 5035

C10(t + 1) =

⎧⎪⎪⎨
⎪⎪⎩

C10(t) + 1, fitness(T) < fitness(Yi)

and Yi,d = 1 and Td = 0

C10(t), otherwise

(19)

Here, T is the child solution and Y is the individual
in the colony [11].

4.2.4. Stigmergic behavior operator
In stigmergic update rule, indicators C01 and C10

are used to update the solutions in the colony given
as formulas (20) and (21):

P01(t + 1) = C01(t)

C01(t) + C10(t)
(20)

P10(t + 1) = C10(t)

C01(t) + C10(t)
(21)

Where, P01(t + 1) is the probability rate of C01 in
iteration t + 1 and P10(t + 1) is the probability rate
of C10 in iteration t + 1. These probabilities are used
to calculate the child solution. Dimension selection
probability (DSP) is a control parameter in the algo-
rithm. If random number generated for dimension in
range of [0, 1] is less than the DSP parameter, move-
ment is performed at this dimension. Assume i and j
are the index of ones and zeros in child solution V,
respectively. Let i and j be random integers between
1 and sizes of i and j, respectively. Therefore, VI indi-
cates random dimension that have a value of 1 and VJ

indicates a random dimension that have value of 0.
The child solution V is calculated given as formulas
(22) and (23):

VI =
{

0 , rand < P10

VI , otherwise
(22)

VJ =
{

1 , rand ≥ P10

VJ , otherwise
(23)

where, rand is a random number generated between
[0,1]. If rand value is less than P10 probability value,
random decision variable in child solution with value
1 VI is set to 0. If rand value is equal or more than
the P10 probability value, random decision variable
in child solution with value 0 VJ is set to 1. If fitness
value of the child solution is better than the parent,
the child solution is replaced to the parent alga colony
[11].

The algorithm will continue to reach the condition
criteria and then will output best solution.

5. Tests and results

In this section, we will do tests on two random-
ized datasets. Since there are no fuzzy datasets with
different arcs in the related works, we cannot com-
pare the results of our method with them. All tests
were carried out by using the MATLAB. The first
dataset includes 24 requirements and 12 interactions
between requirements. In Table 1, the cost and the
satisfaction of development of each requirement are
presented as various kinds of fuzzy numbers (trape-
zoidal and normal fuzzy numbers). The satisfaction
level of requirements is taken from clients by sur-
veys or other requirement engineering tools. To make
it easier for clients to understand, these surveys are
conducted using crisp numbers. For example, in a
poll, clients are requested to assign a score between
0 and 10 as their satisfaction with the development
of each requirement. The score 0 is the lowest level
of satisfaction and the score 10 is the highest level
of satisfaction for the development of each require-
ment in the next release. The values obtained from the
requirements satisfaction survey will be converted to
fuzzy numbers at the discernment of the development
team. The development team also considers a fuzzy
number as the cost of developing each requirement
and defines the interaction between requirements.

Remark 1: Expressing satisfaction levels in a ques-
tionnaire can be considered as a complex task as
customers have multiple opinions under uncertainty
and also the variability, diversity and subjectiv-
ity associated with an accurate satisfaction level
is usually lost. An additional concern arising with
expressing overall satisfactions is the fact that the
opinions of customers during requirement devel-
opment are not homogeneous as time goes on.
Moreover, if satisfaction levels are heterogeneous, it
matters how and to what extent it influences the over-
all satisfaction of requirement. Average scores are
supposed to hide the real situation. To manage these
disadvantages there is an alternate approach which
takes into account that the nature of most attributes
related to evaluations, judgements involve subjectiv-
ity and certain imprecision. In fact, fuzzy numbers are
expressive enough to find a value in it fitting appro-
priately the valuation, opinion, judgement involving
subjective perceptions in most real life situations.

A
U

TH
O

R
 C

O
P

Y

5036 P. Pirozmand et al. / A novel approach for the next software release using a binary artificial algae algorithm

Table 1
Dataset 1

r1 r2 r3 r4 r5 r6 r7 r8

Satisfaction Cost (1,3,8,9) (5,3) (0,3,5,9) (4,5,6,7) (5,7) (1,3,5,9) (1,1) (0,3,4,5)
(2,4) (1,3) (1,2,3,4) (5,5) (2,4,6,7) (3,5) (2,1) (1,2)
r9 r10 r11 r12 r13 r14 r15 r16

Satisfaction Cost (6,7,8,9) (10,2) (1,3,6,7) (2,1) (2,3,6,8) (0,2,3,4) (8,6) (4,6,7,10)
(6,6) (2,3,4,5) (2,6) (1,2,3,4) (5,6) (1,1) (2,3,5,6) (1,3,4,5)
r17 r18 r19 r20 r21 r22 r23 r24

Satisfaction Cost (3,4,6,8) (0,2,3,8) (4,5,6,7) (10,3) (2,3,6,6) (8,7) (5,7,8,9) (10,5)
(1,2,3,4) (4,3) (2,5) (3,4,5,6) (1,4) (1,4,5,6) (3,3) (1,3,4,5)

r4 ⇒ r10 r11 ⇒ r17 r14 ⇒ r17 r12 ⇒ r15 r4 ⊕ r7 r1 ⊕ r15
r11 ⊕ r6 r21 ⊕ r22 r3 ⊗ r10 r22 ⊗ r19 r2 ⊗ r9 r5 ⊗ r24

They have the ability to model the imprecision of
human satisfaction levels, formalize them mathemat-
ically, to ‘precisiate’ them in a continuous way, and to
develop mathematical computation with them. This
approach leads to a fuzzy-valued response format
enabling a level of variability and accuracy which
would not be captured when using a crisp number.

Remark 2: The membership functions of fuzzy num-
bers can have various shapes. The literatures in fuzzy
expressing of satisfaction levels mainly employ trape-
zoidal membership functions, however, they are not
always consistent with human thinking and judge-
ment, since in these cases the membership functions
have the same slope on the whole interval. In reality,
the customer’s opinions change only slightly around
points that represent the worst and the best possible
views on the satisfaction levels. In such cases, normal
membership function together with trapezoidal one
are used to enhance the reliability of opinions. That
is, the slope of the normal function is not constant;
therefore, applying different membership functions
to establish fuzzy numbers results in a more precise
reflection of human thinking and judgement.

In this test, we plan to select the best subset of the
requirements that yields the highest degree of sat-
isfaction by taking into account a different budget
constraint each time. Table 2 considers 8 different
cost limits. For example, within an 80% cost limit,
a subset of requirements should be selected with a
cost of development of less than 292.6 units so that it
yields the maximum satisfaction level. Within this
cost limit, the binary artificial alga algorithm can
select a subset with a development cost of 289.07
units and a satisfaction level of 499.57 units. Table 2
shows the approximate value of the total sum of cost
and satisfaction of this subset of the requirements
in the form of [λ, β, λ′, β′] according to formula
(11). The crisp values of satisfaction and total cost

(columns 2 and 3 of Table 2), are obtained by apply-
ing formula (14) to the fuzzy number of approximate
sum of cost and satisfaction (columns 4 and 5 of
Table 2). Figure 4 shows the bar graphs of satisfaction
and cost of the best selected subsets in every itera-
tion. Figure 4.a is with 60% cost limit and Fig. 4.b is
without cost limits.

Table 2 shows the runtime of the algoriwith any
cost limit. As can be seen, as the cost limit gets more
severe, the runtime of the algorithm also increases.
The reason for this is the algae validation function.
After generating the initial colony and any update
operator, the algae are sent to the validation function
to verify the validity and non-violation of cost limits
and interaction. In this function, if the cost of devel-
oping the selected requirements is greater than the
limit value, a requirement is randomly selected and
removed from the subset. This trend continues until
the amount of alga cost violates the amount of bud-
get constraints. The stronger the cost limit, the more
the number of calls for this recursive function which
increases the runtime of the entire algorithm. In the
absence of any cost limit, the algorithm has the fastest
runtime. In this case, if the algorithm can select all the
requirements in the selected subset, it will provide the
highest satisfaction. The finish criterion of the algo-
rithm was performing 100 iterations. Table 3 shows
other parameters used when simulating the first and
second datasets.

Figure 5 shows a comparison of the runtime of the
algorithm in two modes of the approximate sum of
fuzzy numbers. The red chart shows the algorithm
runtime together with approximate sum of Hassan-
zadeh et al. [10] in which m − 1 approximations were
used for adding m fuzzy numbers together. In our pro-
posed method, all trapezoidal numbers are first added
together at time O(1), and then all of the normal num-
bers are added together at time O(1). The total sum is
obtained with 1 approximation from the sum of the

A
U

TH
O

R
 C

O
P

Y

P. Pirozmand et al. / A novel approach for the next software release using a binary artificial algae algorithm 5037

Table 2
Test results on the first data

Cost limit Crisp satisfaction Crisp cost Fuzzy number cost Fuzzy number satisfaction Time (s)

Without cost limit 546.61 365.7 [59.78, 53.81, 67.48, 51.21]] [101.42, 39.32, 123.51, 39.97] 0.83
90%=329.1 522.08 318.79 [50.78, 47.81, 58.48, 45.21] [97.23, 40.37, 117.90, 39.07] 0.95
80%=292.6 499.57 289.07 [45.71, 44.16, 52.55, 41.56] [91.29, 39.02, 111.64, 39.67] 1.19
70%=256.0 476.19 255.67 [40.71, 38.16, 47.55, 35.56] [88.23, 38.37, 105.77, 38.37] 1.42
60%=219.4 427.9 219.31 [33.58, 33.86, 39.61, 31.91] [79.97, 35.76, 96.29, 33.16] 1.62
50%=182.8 389.80 175.95 [29.65, 23.51, 35.61, 20.91] [75.78, 33.81, 86.55, 30.56] 1.78
40%=146.3 332.17 146.15 [24.52, 19.21, 29.68, 17.25] [64.32, 29.25, 72.87, 27.30] 2.03
30%=109.7 261.10 108.02 [19.58, 12.86, 23.68, 10.25] [52.19, 21.95, 55.81, 21.95] 2.47

Fig. 4. (a) The graph of the highest satisfaction level and its related costs in iterations within the 60% cost limit. (b) The graph of the highest
satisfaction level and its related costs in iterations without a cost limit.

Table 3
Other parameters of the simulation

Parameters Values

Number of �-cut 20
Size colony 40
Iterations 100
UMSP 0.5
DSP 0.66

trapezoidal numbers and the sum of normal numbers.
The green graph shows the runtime of our proposed
algorithm.

In Fig. 5, within a 100% cost limit (or in other
words, without cost limit), the difference between the
runtime of the two algorithms is more than 12 sec-
onds. While all implementation conditions are equal
in the two algorithms, our idea of an optimal approx-
imate sum method leads to an 85% reduction of the
runtime. Again, it is worth emphasizing that in Figs. 5
and 7, the only difference is the method of adding
the different fuzzy numbers together. In addition, the
metaheuristic algorithm used in the two is the same.

Fig. 5. A comparison of the runtime of the algorithm with two
different approximate sum methods.

To prove the quality of the proposed algorithm,
we repeated all previous tests on a larger and more
complex dataset. The second dataset includes 72
requirements and 20 interactions between require-
ments. In this dataset, the range of clients’ scores

A
U

TH
O

R
 C

O
P

Y

5038 P. Pirozmand et al. / A novel approach for the next software release using a binary artificial algae algorithm

Table 4
Dataset 2

r1 r2 r3 r4 r5 r6 r7 r8

Satisfaction (11,13,18,19) (15,7) (0,3,5,9) (4,5,8,11) (5,7) (11,14,15,18) (11,10) (0,3,4,5)
Cost (11,4) (6,3) (1,2,3,4) (9,5) (2,4,6,7) (17,11) (12,11) (1,2)

r9 r10 r11 r12 r13 r14 r15 r16
Satisfaction (16,17,18,19) (10,15) (1,3,6,7) (2,1) (4,5,6,9) (0,2,3,4) (18,6) (7,8,9,12)
Cost (19,14) (12,13,14,15) (2,6) (1,3) (5,6) (2,4) (12,13,15,16) (6,7,9,10)

r17 r18 r19 r20 r21 r22 r23 r24
Satisfaction (13,14,16,20) (0,2,3,8) (4,5,6,9) (19,3) (2,3,7,8) (18,7) (5,7,8,9) (20,2)
Cost (10,12,13,14) (9,3) (8,5) (8,8,9,10) (1,4) (10,14,15,16) (13,3) (7,8,9,13)

r25 r26 r27 r28 r29 r30 r31 r32
Satisfaction (1,3,8,9) (11,6) (0,3,5,9) (4,5,6,7) (15,17) (10,13,15,19) (1,1) (0,3,4,5)
Cost (2,4) (7,3) (1,2,3,4) (5,5) (2,4,6,7) (13,11) (2,1) (1,2)

r33 r34 r35 r36 r37 r38 r39 r40
Satisfaction (16,17,18,19) (18,2) (1,3,6,7) (2,1) (2,3,6,8) (10,12,13,14) (8,5) (5,6,7,10)
Cost (17,6) (8,9,10,11) (2,6) (1,3) (5,6) (11,11) (4,8,12,16) (1,2,4,5)

r41 r42 r43 r44 r45 r46 r47 r48
Satisfaction (3,4,6,8) (0,2,3,7) (2,3,6,7) (12,8) (1,3,6,9) (16,7) (5,7,8,9) (13,9)
Cost (8,9,10,12) (5,4) (4,3) (5,7,8,9) (1,4) (10,14,15,16) (6,4) (4,7,8,9)

r49 r50 r51 r52 r53 r54 r55 r56
Satisfaction (1,3,8,9) (14,8) (0,3,5,9) (7,8,9,13) (5,7) (8,13,15,19) (3,2) (0,3,4,5)
Cost (2,4) (13,5) (1,2,3,4) (7,5) (2,4,6,7) (13,14) (2,1) (1,2)

r57 r58 r59 r60 r61 r62 r63 r64
Satisfaction (15,17,19,20) (20,2) (1,3,6,7) (2,2) (1,4,7,8) (0,2,3,4) (8,6) (4,6,7,10)
Cost (16,17) (12,13,14,15) (5,6) (1,3) (4,6) (3,2) (2,3,5,6) (1,3,4,5)

r65 r66 r67 r68 r69 r70 r71 r72
Satisfaction (3,4,6,8) (4,6,8,10) (5,6,7,8) (10,3) (0,3,5,7) (18,17) (5,7,8,9) (17,9)
Cost (1,2,3,4) (10,15) (7,6) (3,4,5,6) (6,3) (2,4,5,6) (3,3) (2,4,6,8)
r34 ⇒ r20 r21 ⇒ r47 r34 ⇒ r37 r40 ⇒ r57 r12 ⇒ r25
r32 ⇒ r29 r43 ⊕ r39 r52 ⊕ r69 r11 ⊕ r30 r23 ⊕ r24
r55 ⊕ r51 r56 ⊕ r72 r33 ⊕ r38 r61 ⊗ r37 r20 ⊗ r51
r72 ⊗ r64 r17 ⊗ r38 r30 ⊗ r27 r45 ⊗ r66 r42 ⊗ r64

Table 5
Test results on second dataset

Max cost Crisp satisfaction Crisp cost Fuzzy number cost Fuzzy number satisfaction Time
(s)

Without cost limit 2881.0 2308.0 [440.78, 250.99, 471.87, 244.48] [565.78, 218.17, 632.02, 220.12] 0.89
90%=2130.0 2725.4 2122.5 [408.7, 222.3, 438.9, 215.8] [535.0, 209.3, 595.7, 211.9] 1.08
80%=1892.8 2538.08 1882.54 [363.8, 189.0, 394.9, 182.4] [495.9, 201.0, 553.0, 203.0] 1.16
70%=1656.2 2334.83 1652.26 [322.52, 159.39, 350.13, 152.88] [454.78, 192.99, 501.70, 198.20] 1.52
60%=1419.6 2114.14 1409.71 [278.65, 124.69, 307.25, 115.57] [410.91, 186.29, 452.09, 186.29] 1.80
50%=1183.0 1844.62 1176.21 [228.33, 105.43, 255.19, 100.23] [364.46, 159.73, 393.54, 159.73] 2.09
40%=946.4 1587.07 942.0 [187.07, 74.83, 210.64, 67.67] [313.07, 139.83, 338.00, 139.17 2.65
30%=709.8 1314.78 703.43 [141.00, 52.18, 160.77, 44.37] [257.87, 109.88, 283.06, 110.53] 3.16

of satisfaction with the proposed requirements in the
polls is between 0 and 20. Table 4 shows the second
dataset.

In the second dataset, a test is performed with
eight different cost limits. Table 5 tabulates the val-
ues obtained from this test. For example, within the
60% cost limit equal to 1419.6 units, the satisfaction
level of the requirements selected by the algorithm for
development in the next release is equal to 2114.14
units and the related cost of development is 1409.71
units. In Fig. 6, the bar charts show the satisfaction
level and cost of the best selected subsets for each

iteration. Figure 6.a is related to the 70% cost limit
and Fig. 6.b is related to the unlimited cost situation.

The second dataset has a longer runtime due to
having a higher number of requirements and more
restrictions than the first dataset. Figure 7 shows a
comparison of the runtime of the algorithm in two
modes of approximate sum of fuzzy numbers. The
red chart is related to the runtime of the algorithm
with approximate sum used in Hassanzadeh et al.
[10], while the turquoise colored chart is related to
the runtime of our proposed algorithm. While the run-
time of the algorithm is approximated to be 1 minute

A
U

TH
O

R
 C

O
P

Y

P. Pirozmand et al. / A novel approach for the next software release using a binary artificial algae algorithm 5039

Fig. 6. (a) The graph of the most satisfaction level and its related costs in iterations within the 70% cost limit. (b) The graph of the most
satisfaction level and its related costs in iterations without cost limit.

Fig. 7. A comparison of the runtime of the two algorithms.

using Hassanzadeh et al.’s approximate sum method
within a 100% time limit, the runtime of the proposed
algorithm is less than 3 seconds. This is indicative of a
20-fold reduction of runtime, which is very important
for metaheuristic algorithms.

Figure 8 shows the convergence diagrams of the
binary artificial alga algorithm in unlimited cost mode
on both datasets. Figure 8.a and 8.b are related to
the first and second datasets, respectively. In these
two figures, convergence refers to the convergence
of the satisfaction level of the subsets selected by
the algorithm. The algorithm converges in the 33rd

iteration due to the smallness of the first dataset, but
converges in the second dataset in the 82nd iteration.

6. Conclusion

In this paper, we provided a solution procedure for
one of the problem during software development. The
next release problem is one of the problems facing
development teams in incremental software develop-
ment methods. In each release, a set of requirements
is suggested by clients for development. Usually, due
to constraints such as lack of funds, lack of time
and technical difficulties, the development team can-
not develop all the proposed requirements. In each
release, the development team must select a subset of
the proposed requirements so that it can provide the
highest degree of satisfaction for its clients and the
lowest cost to the company by considering the con-
straints of the problem. In large projects there should
be a reliable instrument to help with the decision-
making process and selection the development team
makes. In this problem, the development team should
assign a value of satisfaction, as well as another value
of cost to each requirement. In order for the problem
to be more applicable, allocation of fuzzy values is
better than the allocation of crisp ones. In this paper,
an optimized approximate sum model was used to
calculate the summation of different kinds of fuzzy
numbers, which greatly reduced the load of compu-
tations compared to the previous method. We also
used a binary artificial alga algorithm to solve the
problem. To test the quality of the proposed method,
we conducted complete experiments on two dummy
fuzzy datasets. The results of the proposed algorithm
are very reliable, lack human errors, and can help the
development team with their decision-making. The

A
U

TH
O

R
 C

O
P

Y

5040 P. Pirozmand et al. / A novel approach for the next software release using a binary artificial algae algorithm

Fig. 8. (a) The convergence diagram of the binary artificial alga algorithm when solving the first dataset. (b) The convergence diagram of
the binary artificial alga algorithm when solving the second dataset.

runtime of the proposed algorithm is very short. The
subset introduced by the proposed algorithm is with-
out human error and provides the highest level of
client satisfaction. Future researches in this scope are
as follows.

• Introducing new methods for approximating
fuzzy numbers with less computation.

• Introducing automated methods for converting
crisp values obtained from surveys to fuzzy num-
bers.

• Using other metaheuristic algorithms or com-
bining them to solve the problem.

Acknowledgment

The authors would like to thank the anonymous
reviewers and the associate editor for their insightful
comments and suggestions.

References

[1] G. Brau, J. Hugues and N. Navet, Towards the system-
atic analysis of non-functional properties in Model-Based
Engineering for real-time embedded systems. Science of
Computer Programming 156 (2018), 1–20.

[2] J. Jia, X. Yang, R. Zhang and X. Liu, Understanding
software developers’ cognition in agile requirements engi-
neering. Science of Computer Programming, 178 (2019),
1-19.

[3] A.J. Bagnall, V.J. Rayward-Smith and I.M. Whittley, The
next release problem, Information and software technology
43(14) (2001), 883-890.

[4] J. Del Sagrado, I.M. Del Águila and F.J. Orellana,
Multi-objective ant colony optimization for requirements

selection, Empirical Software Engineering 20(3) (2015),
577–610.

[5] O. Malgonde and K. Chari, An ensemble-based model
for predicting agile software development effort, Empirical
Software Engineering 24(2) (2019), 1017-1055.

[6] L.L. Minku, A novel online supervised hyperparameter tun-
ing procedure applied to cross-company software effort
estimation, Empirical Software Engineering (2019), 1–52.

[7] H. Alrezaamiri, A. Ebrahimnejad and H. Motameni, Soft-
ware requirement optimization using a fuzzy artificial
chemical reaction optimization algorithm, Soft Computing
23 (2019), 9979-9994.

[8] J.M. Chaves-González, M.A. Perez-Toledano and A.
Navasa,Teaching learning based optimization with Pareto
tournament for the multiobjective software requirements
selection, Engineering Applications of Artificial Intelli-
gence 43 (2015), 89-101.

[9] J.M. Chaves-González, M.A. Perez-Toledano and A.
Navasa, Software requirement optimization using a mul-
tiobjective swarm intelligence evolutionary algorithm,
Knowledge-Based Systems 83 (2015), 105-115.

[10] R. Hassanzadeh, I. Mahdavi, N. Mahdavi-Amiri and A.
Tajdin, A genetic algorithm for solving fuzzy shortest path
problems with mixed fuzzy arc lengths, Mathematical and
Computer Modelling 57(1–2) (2013), 84-99.

[11] S. Korkmaz and M.S. Kiran, An artificial algae algorithm
with stigmergic behavior for binary optimization. Applied
Soft Computing (2018).

[12] S.A. Uymaz, G. Tezel and E. Yel, Artificial algae algo-
rithm (AAA) for nonlinear global optimization, Applied Soft
Computing 31 (2015), 153–171.

[13] A.M. Pitangueira, R.S.P. Maciel and M. Barros, Soft-
ware requirements selection and prioritization using SBSE
approaches: A systematic review and mapping of the litera-
ture, Journal of Systems and Software 103 (2015), 267-280.

[14] A. Hudaib, R. Masadeh, M.H. Qasem and A. Alzaqebah,
Requirements prioritization techniques comparison, Mod-
ern Applied Science 12(2) (2018), 62.

[15] M.A.A. Féris, O. Zwikael and S. Gregor, QPLAN: Deci-
sion support for evaluating planning quality in software
development projects, Decision Support Systems 96 (2017),
92-102.

A
U

TH
O

R
 C

O
P

Y

P. Pirozmand et al. / A novel approach for the next software release using a binary artificial algae algorithm 5041

[16] Y. Li, T. Yue, S. Ali and L. Zhang, Zen-ReqOptimizer: a
search-based approach for requirements assignment opti-
mization, Empirical Software Engineering 22(1) (2017),
175-234.

[17] M. Sadiq and S.K. Jain, Applying fuzzy preference relation
for requirements prioritization in goal oriented requirements
elicitation process, International Journal of System Assur-
ance Engineering and Management 5(4) (2014), 711-723.

[18] R.K. Chopra, V. Gupta and D.S. Chauhan, Experimentation
on accuracy of non-functional requirement prioritization
approaches for different complexity projects, Perspectives
in Science 8 (2016), 79-82.

[19] M. Ramzan, M.A. Jaffar and A.A. Shahid, Value based
intelligent requirement prioritization (VIRP): expert driven
fuzzy logic based prioritization technique, International
Journal of Innovative Computing, Information and Control
7(3) (2011).

[20] M. Alrashoud and A. Abhari, Perception-based software
release planning, Intelligent Automation & Soft Computing
21(2) (2015), 175-195

[21] M. Alrashoud and A. Abhari, Planning for the next soft-
ware release using adaptive network-based fuzzy inference
system, Intelligent Decision Technologies 11(2) (2017),
153-165.

[22] X. Lai, M. Xie, K.C. Tan and B. Yang, Ranking of customer
requirements in a competitive environment, Computers &
Industrial Engineering 54(2) (2008), 202-214.

[23] J.T. Souza, C.L. Brito Maia, T.N. Ferreira, R.A. Ferreira and
M.M. Albuquerque, An ant colony optimization approach
to the software release planning with dependent require-
ments, in: Proc. of the 3rd Int. Symposium on Search Based
Software Engineering (SBSE’11), 2011, pp. 142–157.

[24] N. Veerapen, G. Ochoa, M. Harman and E.K. Burke, An
integer linear programming approach to the single and bi-
objective next release problem, Information and Software
Technology 65 (2015), 1–13.

[25] D. Mougouei, Factoring requirement dependencies in
software requirement selection using graphs and integer
programming. In Proceedings of the 31st IEEE/ACM Inter-
national Conference on Automated Software Engineering
(2016), 884–887. ACM.

[26] A.A. Araújo, M. Paixao, I. Yeltsin, A. Dantas and J.
Souza, An architecture based on interactive optimization
and machine learning applied to the next release problem,
Automated Software Engineering 24(3) (2017), 623-671.

[27] H. Jiang, J. Zhang, J. Xuan, Z. Ren and Y. Hu, A hybrid ACO
algorithm for the next release problem. In Software Engi-
neering and Data Mining (SEDM), 2010 2nd International
Conference on (2010), pp. 166–171. IEEE. 171.

[28] R. Masadeh, A. Alzaqebah, A. Hudaib and A.A. Rahman,
Grey wolf algorithm for requirements prioritization, Mod-
ern Applied Science 12(2) (2018), 54.

[29] I.M. Del Águila and J. Del Sagrado, Three steps multi-
objective decision process for software release planning,
Complexity 21(S1) (2016), 250-262.

[30] J.M. Chaves-González and M.A. Pérez-Toledano, Differen-
tial evolution with Pareto tournament for the multi-objective
next release problem, Applied Mathematics and Computa-
tion 252 (2015), 1-13.

[31] A.M. Pitangueira, P. Tonella, A. Susi, R.S.P. Maciel and M.
Barros, Minimizing the stakeholder dissatisfaction risk in
requirement selection for next release planning, Information
and Software Technology 87 (2017), 104-118.

[32] M. Nayebi and G. Ruhe, Asymmetric release planning-
compromising satisfaction against dissatisfaction, IEEE
Transactions on Software Engineering (2018), 1–5.

[33] A. Ebrahimnejad, A simplified new approach for solving
fuzzy transportation problems with generalized trapezoidal
fuzzy numbers, Applied Soft Computing 19 (2014), 171–176

[34] A. Ebrahimnejad, Z. Karimnejad and H. Alrezaamiri, Parti-
cle swarm optimisation algorithm for solving shortest path
problems with mixed fuzzy arc weights, International Jour-
nal of Applied Decision Sciences 8(2) (2015), 203-222.

[35] A. Ebrahimnejad, M. Tavana and H. Alrezaamiri, A novel
artificial bee colony algorithm for shortest path problems
with fuzzy arc weights, Measurement 93 (2016), 48–56.

[36] A. Ebrahimnejad and J.L. Verdegay, Fuzzy Sets-Based
Methods and Techniques for Modern Analytics, volume
364 of Studies in Fuzziness and Soft Computing. (1st ed.).
Springer International Publishing (2018).

[37] A. Ebrahimnejad, J.L. Verdegay and H. Garg, Signed
distance ranking based approach for solving bounded inter-
val valued fuzzy numbers linear programming problems.
International Journal of Intelligent Systems 9(34) (2019),
2055-2076.

[38] M. Enayattabar, A. Ebrahimnejad, H. Motameni and H.
Garg, A novel approach for solving all-pairs shortest path
problem in an interval-valued fuzzy network, Journal of
Intelligent & Fuzzy Systems 37 (2019) 6865-6877.

[39] A. Abbaszadeh Sori, A. Ebrahimnejad and H. Motameni,
The fuzzy inference approach to solve multi-objective con-
strained shortest path problem, Journal of Intelligent &
Fuzzy Systems 32 (2020), 4711-4720.

[40] A. Abbaszadeh Sori, A. Ebrahimnejad and H. Motameni,
Elite artificial bees’ colony algorithm to solve robot’s fuzzy
constrained routing problem, Computational Intelligence 36
(2020), 659–681.

[41] A. Tajdin, I. Mahdavi, N. Mahdavi-Amiri and B.
Sadeghpour-Gildeh, Computing a fuzzy shortest path in
a network with mixed fuzzy arc lengths using �-cuts,
Computers & Mathematics with Applications 60(4) (2010),
989-1002.

[42] M.A. Tawhid and V. Savsani, A novel multi-objective
optimization algorithm based on artificial algae for multi-
objective engineering design problems, Applied Intelligence
48(10) (2018), 3762-3781.

