
1 23

Requirements Engineering

ISSN 0947-3602

Requirements Eng
DOI 10.1007/s00766-020-00328-y

Parallel multi-objective artificial bee
colony algorithm for software requirement
optimization

Hamidreza Alrezaamiri, Ali
Ebrahimnejad & Homayun Motameni

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer-Verlag

London Ltd., part of Springer Nature. This e-

offprint is for personal use only and shall not

be self-archived in electronic repositories. If

you wish to self-archive your article, please

use the accepted manuscript version for

posting on your own website. You may

further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

Vol.:(0123456789)1 3

Requirements Engineering
https://doi.org/10.1007/s00766-020-00328-y

ORIGINAL ARTICLE

Parallel multi‑objective artificial bee colony algorithm for software
requirement optimization

Hamidreza Alrezaamiri1 · Ali Ebrahimnejad2 · Homayun Motameni3

Received: 19 November 2017 / Accepted: 17 January 2020
© Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
In incremental software development approaches, the product is developed in various releases. In each release, a set of
requirements is proposed for the development. Usually, due to lack of funds, lack of time and dependency between require-
ments, there is no possibility to develop all the required requirements. There are two conflicting objectives for choosing an
optimal subset of the requirements: increasing customer satisfaction and reducing development costs. This problem is known
as the next release problem (NRP) and is categorized as an NP-hard problem. Unlike the standard version of the NRP, we
formulate this problem as a restricted multi-objective optimization problem. There exist metaheuristic algorithms for solving
this problem performed as serials. In this paper, we introduce a parallel algorithm based on the master–slave model in order
to improve the quality of the solutions. Based on the criteria of multi-objective problems, the quality of the obtained solu-
tion is compared with several metaheuristic algorithms. Two scenarios and two different datasets are used for experiments.
Results indicate that the proposed method in the first scenario would highly improve the quality of solutions. Moreover,
the method reduces execution time significantly through improvement in the quality of the solution in the second scenario.

Keywords  Software requirements · Multi-objective algorithm · Next release problem · Master–slave model

1  Introduction

In the past years, we have seen the growth of complexity and
software capabilities. Large software systems have sensi-
tive and complex development processes. One of the most
important stages of the software development is the “recog-
nition requirements” stage. Carelessness at this stage of the
software development may lead to an increase in estimated
costs of product development, increase in product devel-
opment time, reducing product quality, declining customer

satisfaction and even project failure [22]. Therefore, it has
always been tried to recognize customer needs and demands
as fast and accurately as possible using new methods and
to consider them in the software product [16, 35]. In some
software development methods such as incremental develop-
ment methods, the product is developed in several releases.
In these methods, like in agile methods, the developer faces a
set of requirements that need to be developed in each release
[13]. Due to technical problems in the development of some
requirements, lack of time, lack of funds and conflicting
requirements of projects, it is almost impossible to develop
all proposed requirements in every release [29]. Therefore, it
is important to choose an optimal subset of the developmen-
tal requirements that can provide maximum satisfaction to
customers, with minimal time and cost for the development
team. In large projects with a large number of requirements,
it is very difficult to choose the optimal subset. That is why
it is essential to propose a method to determine the opti-
mal subset of requirements and to present the result of the
method to software engineers to help them in decision mak-
ing. Choosing the optimal subset of requirements which is
called the next release problem (NRP) is a NP-hard problem
because of having at least two conflicting objectives. The

 *	 Ali Ebrahimnejad
	 a.ebrahimnejad@qaemiau.ac.ir

	 Hamidreza Alrezaamiri
	 hamidreza.alreza@baboliau.ac.ir

	 Homayun Motameni
	 motameni@iausari.ac.ir

1	 Department of Computer Engineering, Babol Branch,
Islamic Azad University, Babol, Iran

2	 Department of Mathematics, Qaemshahr Branch, Islamic
Azad University, Qaemshahr, Iran

3	 Department of Computer Engineering, Sari Branch, Islamic
Azad University, Sari, Iran

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-020-00328-y&domain=pdf

	 Requirements Engineering

1 3

cost of software development is defined as the sum of indi-
vidual developed requirements [36]. If customer satisfaction
increases and cost reduction is taken into account, it is clear
that by reducing the cost of software development, require-
ments are less developed and customer satisfaction reduces
accordingly. On the other hand, by developing most of the
proposed requirements, customer satisfaction increases,
but it also leads to an increase in the cost of development.
Because of the contradictory nature of these two objectives,
traditional and single-objective optimization methods cannot
find the optimal subset of requirements [38]. For this reason,
the use of multi-objective evolutionary algorithms for solv-
ing this issue is necessary [1, 7]. In recent years, researchers
have used different multi-objective evolutionary algorithms
for solving NRPs. All these algorithms were implemented
serially and obtained solutions with different qualities due
to their ability to find the solution space. Examples of these
algorithms are greedy randomized adaptive search proce-
dure (GRASP) [37], non-dominated sorting genetic algo-
rithm (NSGA-II) [8], ant colony system (ACS) [10], multi-
objective artificial bee colony (MOABC) [4] and differential
evolution with Pareto tournament (DEPT) [3] algorithms.
Among them, the multi-objective ABC algorithm produced
the highest quality solutions. In this paper, we intend to
use the parallel processing technique and execute several
MOABC algorithms [4] in the master–slave model simulta-
neously in order to obtain higher-quality solutions than those
of the serial mode.

Due to the complexities and limitations of the NRP,
serial metaheuristic algorithms may not be able to probe
the problem space well and provide acceptable solutions in
a short time. We run some MOABC algorithms in parallel
with a new technique to alleviate this problem. Because each
MOABC algorithm has a different random initial population
and also operators have random choices, it may be possible
to find solutions in each run of the MOABC algorithm that
other algorithms could not detect. In this technique, a set
of non-dominated solutions (NDSs) is derived from each
algorithm. Eventually, these sets are merged to form the
overall solution set. The overall solution set of the problem
derived from the implementation of this technique based
on multi-objective criteria such as the number of NDSs,
HV and the spread of solutions has better quality than the
set of solutions obtained from the serial implementation of
a MOABC algorithm. Also, the presented technique can
reduce the runtime by adopting some policies which will be
discussed later. This is the first time a parallel algorithm is
used for search-based software engineering (SBSE) [20] to
solve the multi-objective NRP. Results of the parallel execu-
tion of the proposed algorithm are compared with those of
serial parallel algorithms such as NSGA-II, ACO, MOABC
and GRASP. The results confirm that the proposed approach
yields higher-quality solutions than the serial executions.

The rest of the paper is organized as follows. In Sect. 2,
we present the literature review. In Sect. 3, the multi-objec-
tive NRP is discussed and formulated. In Sect. 4, the mas-
ter–slave parallel processing model and the proposed method
are introduced. In Sect. 5, the experiments and results
obtained are analyzed. Finally, in Sect. 6, implications of
the study, future works in this domain and conclusion are
presented.

2 � Literature review

The selection of an optimal subset of requirements for the
development in the next software release is a very complex
task. In fact, it is considered as one of the NP-hard-related
problems. This means that traditional methods cannot find
the optimal solution to this problem at the correct time.
Search-based software engineering (SBSE) is one of the
research areas in which search-based optimization algo-
rithms are used to solve problems related to the software
engineering. The NRP is also covered in this area [20].
Pitangueira et al. [33] carried out classification, analysis and
proper assessment of previous works on issues related to the
selection and prioritization of the requirements of the soft-
ware. Recently, suggested methods for solving the NRP were
mostly in the form of metaheuristic optimization algorithms.

One of the first efforts to solve the NRP is done by Karls-
son [24] in which the author used two methods, namely ana-
lytical hierarchy process (AHP) and quality function deploy-
ment (QFD), to select and prioritize software requirements.
In the QFD method, the requirements were prioritized, and
in the AHP method, the requirements were classified. In
large projects with a large number of requirements, these
methods are not effective due to the many comparisons
drawn and long run times. Bagnall et al. [2] introduced three
methods for selecting the optimal subset of requirements.
The first method used linear programming to obtain the
exact solution of the problem. In the second method, three
greedy algorithms were used for solving the same problem.
The third method used two local search algorithms, namely
hill climbing and simulated annealing. In NRPs with a low
number of requirements, the linear programming method
finds the exact solution of the problem at the correct time.
However, the linear programming method cannot find the
solution in a reasonable time when the size of problem is
large. The other two methods presented in this article could
not find qualified solutions due to their low search capabili-
ties in the solution space.

Metaheuristic optimization algorithms used to solve the
NRP fall into two categories: single objective and multi-
objective. In the single-objective optimization algorithms,
the algorithm turns the multi-objective problem into a
single-objective problem by assigning a specific weight to

Author's personal copy

Requirements Engineering	

1 3

each goal and merging them. Greer and Ruhe [19] used the
genetic algorithm to select the optimal subset of require-
ments. De Souza et al. [12] solved the NRP using the ACO
algorithm. Jiang et al. [23] combined the ACO algorithm
with a local search algorithm to select the optimal subset of
requirements. The aim of this approach was to increase the
ability of the algorithm to find quality solutions.

In recent years, the NRP has been solved mostly in the
form of a multi-objective optimization problem. In multi-
objective problems, none of the objectives is superior to oth-
ers. In fact, the importance of all objectives is the same. The
NRP was first formulated as multi-objective by Zhang et al.
[42]. Durillo et al. [14] analyzed the multi-objective optimi-
zation algorithms, Pareto archived evolution strategy (PAES)
[25], NSGA-II [8] and multi-objective cellular genetic algo-
rithm (MOCell) [30] to solve the NRP. Del Sagrado et al.
[10] proposed the multi-objective ACS algorithm to solve
this problem. In that paper, the interaction between require-
ments was incorporated in the datasets for the first time.
Chaves-González and Pérez-Toledano [3] used the differ-
ential evolution algorithm to solve this problem and con-
sidered the interaction between requirements. Parejo et al.
[31] used the integer linear programming method in both
single-objective and multi-objective models. These models
were able to find the exact solution in the single-objective
model and small-sized multi-objective problems. But their
proposed method in large multi-objective problems will not
have proper run time. Chaves-González et al. [4] applied the
MOABC algorithm to select the optimal set of requirements.
High-quality results were obtained by this algorithm. Here,
the interaction between requirements was considered and
two datasets assessed in the article were made available. In
the present study, we intend to run the MOABC algorithm
introduced in Chaves-González et al. [4] through the parallel
way and in the master–slave model. The union of the results
obtained by running all algorithms in parallel gives a sig-
nificant and quality solution set. So far, no parallel algorithm
has been introduced for solving the NRP. For this reason,
the quality of the results obtained by the proposed method
is compared with those of the serial algorithm introduced in
previous studies.

3 � The problem of selecting the optimal
subset of multi‑objective requirements

Single-objective problems are problems with inherently one
objective. If there are several different objectives in the prob-
lem, a main objective will be formed when certain weights
are assigned to each objective, and they are then combined
into a single objective [6]. Suppose there are three goals,
namely f1, f2 and f3 in a problem. In addition, we intend
to aggregate them into a single-objective problem through

assigning certain weights to these objectives. In formula (1),
it can be seen that the combination of these three objectives
forms the main objective of the problem:

In single-objective problems, there is usually a unique
solution to the problem. However, in multi-objective prob-
lems, the objectives are not combined together, and there
is no unique solution. Rather, there is a set of solutions,
none having superiority over another. This solution set is
referred to as non-dominated solutions. This solution set in
the multi-objective problems figured out the Pareto fron-
tier [31]. Suppose we have an n-objective problem, and let
x = [x1, x2,… , xn] and y =

[
y1, y2,… , yn

]
 denote the two

feasible solutions of this problem. Solution x is dominant
over solution y if x is better than or equal to y for all n objec-
tives. Also, there should be at least one objective xi where
x is strictly better than in y . Otherwise, the two objectives
are non-dominant, i.e., neither objective is dominant over
another. Three solutions are shown in Fig. 1. The complete
solutions to the objectives f1 and f2 are at point 0. Solu-
tion A is dominant over solution C because, for every two
objectives, solution A is of higher quality. f1(A) < f1(C) and
f2(A) < f2(C) . However, the two solutions A and B are non-
dominated by one another for each one is dominant over the
other in on objective.

3.1 � The problem of selecting the requirements

In all software engineering projects, proper selection and
elicitation of requirements are an important and critical
task. To identify and elicit the requirements properly in
the early stages of product development, various methods

(1)W1 ∗ f1 +W2 ∗ f2 +W3 ∗ f3 = F.

Fig. 1   The Pareto front diagram

Author's personal copy

	 Requirements Engineering

1 3

have been introduced [9, 17, 27, 32]. However, due to the
presence of numerous and sometimes contradictory fac-
tors, proper selection of the requirements that need to be
developed poses a great challenge to software engineers. In
agile development methods in which a product is developed
in various releases, the very challenge becomes even more
serious [26]. Problems such as the presence of customers
with different views and interests, difference between the
levels of importance of customers for developer companies,
factors affecting the market and companies’ tendencies to
consider the needs of new customers make selection very
difficult. Despite all these problems, software engineers have
to select an optimal subset of proposed requirements allow-
ing for maximum satisfaction for customers, as well as the
lowest cost of development for a software company [10]. In
addition, the presence of interactions between requirements
creates a serious limitation in the selection of requirements.
There are different types of interactions and dependencies
between requirements which appear to impose restrictions
on the problem. Del Sagrado et al. [10] classified the interac-
tions between requirements into four major groups:

•	 Implication ri ⇒ rj . A requirement rj cannot be imple-
mented if a requirement ri has not been chosen yet.

•	 Combination ri ⊕ rj . A requirement ri cannot be chosen
separately from a requirement rj.

•	 Exclusion ri ⊗ rj . A requirement ri cannot be chosen
together with a requirement rj.

•	 Modification The development of the requirement ri
implies that some other requirements change their satis-
faction or implementation effort.

There is a major advantage in considering the NRP as a
multi-objective one rather than a weighted single-objective
one. In the multi-objective problem, software engineers
find a set of non-dominated solutions rather than one good
solution. The solution set makes up the Pareto front which
enables the developer team to analyze the cost and satisfac-
tion. For example, the developer team can conclude from the
Pareto front graph how much it would additionally cost it if
it requests a 15 percent increase in customer satisfaction. It
can also compute the amount of saved money by decreasing
customer satisfaction by 5 percent [42].

3.2 � Multi‑objective NRP formulation

In the multi-objective NRP (MONRP), n requirements are
proposed for development in the next release. We consider
this set as R =

{
r1, r2,… , rn

}
 . Each requirement has a cost

of development represented as E =
{
e1, e2,… , en

}
 . Assume

that n requirements of the set R were proposed by m clients
as C =

{
c1, c2,… , cm

}
 . Each client has an importance level

for the company. The importance level is assumed to be
W =

{
w1,w2,… , wm

}
.

It is assumed that each client in C gives a value to each
requirement in R. The value that a requirement rj has for a
particular client ci is given by an amount vij ≥ 0. A matrix of
m × n holds all the importance amounts vij. Total satisfaction sj
of a given requirement rj is calculated as the weighted sum of
its values for all the clients considered and can be expressed as
indicated in Eq. (2). The set of the total satisfactions calculated
in that way is denoted by S =

{
s1, s2,… sn

}
.

where j is the index of requirements set. Since there are six
requirements, the index j is varied from 1 to 6.

In the MONRP, each solution is displayed as an n-cell
vector where the ith cell on the vector corresponds to the ith
requirement in the set R, for i = 1, 2, …,n. A solution is shown
in Fig. 2.

In each solution, each requirement selected to be developed
in the next release takes value 1 in its corresponding cell and
value 0 otherwise. We should be looking to find solutions that
are non-dominated regarding the satisfaction and cost objec-
tives. Of course, the suggested solutions should meet the limi-
tations considered for the problem. The first limitation is the
dependence between requirements which were explained in
the previous section. The second limitation is the maximum
amount of development costs which is considered by the devel-
oper company. The maximum cost of a product denoted by lc is
calculated by formula (3) where x is a solution of this problem.

Each solution is valid if it meets the two limitations, namely
the dependency between requirements and the maximum cost
of development [4].

3.3 � The multi‑objective ABC algorithm and its
applications

The results obtained by the multi-objective ABC algorithm
[4] to solve the NRP on the basis of multi-objective problem
measurement criteria were of higher quality than those of
other algorithms for solving this problem. Their analysis of
the results showed that the proposed algorithm can efficiently
generate high-quality solutions. These were evaluated by

(2)sj =

m∑

i=1

wi ∗ vij j = 1, 2,… , 6,

(3)
∑

j∈x

ej ≤ lc.

Fig. 2   Structure of a solution

Author's personal copy

Requirements Engineering	

1 3

comparing them with different proposals (in terms of multi-
objective metrics). The results generated by the ABC algo-
rithm surpass those generated in other relevant work in the
literature like NSGA II, GRASP and ACS. For example, their
technique can obtain a HV of over 60% for the most complex
dataset managed, while the other approaches published cannot
obtain an HV of more than 40% for the same dataset. Because
of the complexity of the NRP, we intend to continue to improve
the quality of the solutions to this problem. In this article, we
intend to perform the simultaneous running of several multi-
objective ABC algorithms in parallel in a master–slave model,
and obtain a higher-quality solution set compared to that of the
serial MOABC algorithm by means of the union of their non-
dominated archive of solutions. In this section, the MOABC
algorithm [4] which is the basis of our article is described.
The algorithm is composed of three main steps, and each step
is related to the activity of one type of bees. In this algorithm,
there are three types of bees: employed, onlooker and scout
bees. Employed bees search the environment to find a new
food source and return the hive upon finding one. Through
dance performances, they inform the onlooker bees of the
location of the food source. Every onlooker bee in the hive
selects a food source at random after obtaining the employed
bees’ information in order to launch more searches in that
area. The better the food source, the greater the chances of
selection by onlooker bees. The third type of bees is scout
bees. Employed bees that abandon their food source become a
scout bee. They move in the area randomly to find another food
source. In [4], the authors combined two interesting ideas from
other famous multi-objective algorithms with their own algo-
rithm. Their first idea was to utilize the non-dominated sorting
technique from the NSGA-II algorithm [8]. According to this
technique, the population solutions were grouped according to
dominance rank. The second idea of the PAES algorithm [25]
was to use the concept of a non-dominated solution archive in
order to store the best solutions found during implementation
in their archives.

In Algorithm 1, MOABC pseudocode is shown to solve
the NRP [4]. In this algorithm, NEB is the number of
employed bees; NOB is the number of onlooker bees; Prob
is the mutation probability; LimitForScout is the parameter
related to the scout bees. The related algorithm generates a
random solution for every employed bee in the first step so
that the colony is shaped (second line in algorithm 1). In the
colony created, all limitations defined in the problem are
met so that the solutions generated are valid. After creating
the colony, solutions are evaluated based on formulas (2)
and (3) which determine their level of satisfaction and cost,
respectively (third and fourth lines in Algorithm 1). Colony-
based solutions are sorted according to non-dominated ranks
and crowding distance. If a solution has less dominance
ranking than another solution, or if equal, it has a greater
crowding distance, considered a better solution. Before the

main loop of algorithm starts, the non-dominated solution
set (NDS_archive) is set to null. The main loop of the algo-
rithm (lines 6 to 30) includes three steps of searching, one
step of sorting, and storing the solutions. At the stage of the
employed bees’ search (lines 7 to 11), each employed bee
creates mutations on its corresponding solution to create a
new solution. To ensure that the solutions resulting from
the mutation do not violate the limitations of the problem, a
function validates them. It corrects the solution so that the
solutions will always remain valid [4]. If the new solution
is of higher quality (regarding the dominance and crowding
distance criteria) than the parent solution, it will be replaced
and would otherwise be discarded. After the employed bees’
work (in line 13) is finished, a vector including the prob-
ability of selection of any food source is created for the next
step. The higher the quality of the food source, the more
likely its being selected. Lines 15 to 19 are related to the
stage of the onlooker bees search. Each onlooker bee that is
randomly generated based on the probability vector at the
end of the previous stage selects a food source to search and
apply the practice of mutation. The solution resulting from
mutation is checked to ensure its validity, and if necessary,
it is repaired. Like the previous stage, if the new solution is
of higher quality than the parent one, it will be replaced and
would otherwise be discarded. Lines 20 to 25 are related to
scout bees.

1: % Generate and evaluate the colony C
2: C = random Generation Of Employed Bees (|NEB)
3: C = fast Non Dominated Sort (C, NEB)
4: C = crowding Distance Calculation (C, NEB)
5: NDS _ archive = empty
6: while (not stop condition)
7: % Employed bees search stage
8: for i = 1 to NEB
9: mutated Bee = explore Solution (Ci, Prob)
10: Ci = update Employed Bee (Ci, mutated Bee)
11: end
12: % Generate a probability vector using the employed bees
13: prob Vector = generate Probability Vector (C, NEB)
14: % Onlooker bees search stage
15: for i = NEB to NOB
16: Cchosen = choose Employed Bee (prob Vector, C, NEB)
17: mutated Bee = explore Solution (Cchosen, Prob)
18: Cchosen = update Onlooker Bee (Cchosen, mutated Bee)
19: end
20: %Scout bees search stage
21: for i = 1 to NEB
22: if Ci. Iterations > limit For Scout then
23: Ci = replace With Scout Bee ()
24: end
25: end
26: %Sort the colony by quality and update the Pareto
 solutions archive
27: C = fast Non Dominated Sort (C)
28: C = crowding Distance Calculation (C)
29: NDS _ archive = update NDS Archive (C)
30: end

Author's personal copy

	 Requirements Engineering

1 3

Each employed bee that is not successful as many as the
LimitForScout parameter value in its local queries, leaves
the food source and turns into a scout bee. Searching the
problem space, the bee produces a new random solution,
and from then on, works on this food source. In lines 27 and
28, the colony solutions are sorted based on non-dominated
ranks and crowding distance. In line 29, the non-dominated
solutions are stored in NDS_archive. The main loop is
repeated until the termination condition is reached. In each
iteration, the non-dominated solutions are stored in NDS_
archive. Due to its high ability, the ABC algorithm is used
in many problems. The algorithm has many applications
in solving various problems either as multi-objective or as
single objective. In [15, 39, 40], the single-objective (ABC)
algorithm and in [5, 11, 34], the multi-objective (ABC) algo-
rithm were used to solve the problem.

4 � Parallel multi‑objective artificial bee
colony

In the last section, the multi-objective ABC algorithm was
introduced as a serial algorithm. The metaheuristic algo-
rithms in spite of all their ability run into trouble in some
of the major and complex problems, and there is always a
need for their improvement. In this section, we intend to
improve the solutions of the NRP using the master–slave
parallel programming model. Therefore, the parallel multi-
objective artificial bee colony (PMOABC) is introduced. In
what follows, detailed description of this algorithm is given.
We first describe the master–slave model.

4.1 � The master–slave model

In recent years, the use of parallel programming for
metaheuristic algorithms has gained greater attention, espe-
cially when serial metaheuristic algorithms did not have sat-
isfactory runtime and solution quality. Parallel evolutionary
algorithms can be classified from different aspects.

From an architectural perspective, these algorithms can
fall into either the shared memory or distributed memory
architecture. In the shared memory architecture, algorithms
run in parallel on the cores of a computer or threads of a
processor, and communication is established through writing
on the shared memory. However, in the distributed memory
architecture, algorithms run on different computers, and
communication between the computers is achieved through
message passing [18].

From another aspect, classification of these algorithms
fall into two categories, namely distributed population mod-
els and distributed dimension models. Distributed popula-
tion models include the master–slave model, the Iceland
model, the cell model and the hierarchical model which

parallelize an evolution task at population, individual or
operation levels. The second group includes distributed
dimensions models such as coevolution and multi-agent
models which focus on reducing the problem size [18].

In the master–slave model, a processor or core is selected
as the master, and the rest of the core serves as the slaves
for the master core. The master usually delegates the hard
work or heavy computing tasks to the slaves and waits for
results of their works. The master–slave model is shown in
Fig. 3. In this figure, the master sends individuals to slaves
for determining their fitness and then receives the fitness
amounts from slaves.

In recent years, metaheuristic algorithms which were
usually run in parallel in the master–slave model appeared
as two common forms. In the first form, the master core
executed the main part of the algorithm. It also assigned
the tasks of calculating the fitness of solutions and updat-
ing solutions to the core of slaves and would then wait for
a response from them [21]. The master–slave model might
appear inefficient for problems where the processing time
related to the computations assigned to the slaves is not high.
This is because communication between masters and slaves
imposes more time. In the second common form of using the
master–slave model, the master would carry out all computa-
tions related to the algorithm in each iteration, and then, it
would assign the obtained solutions to the slaves for further
searches (local search) and would receive the results from
them. A solution replaces the parent solution if a higher-
quality solution is obtained in the local search [41]. The per-
formance of distributed computations is measured according
to two criteria, namely speedup and efficiency. The speedup
rate equals the serial execution time of the algorithm divided
by the parallel execution time of the algorithm. The amount
of efficiency is defined as the speedup rate divided by the
number of cores (or processors) participating in the pro-
cess. In practice, these two criteria may be affected due to
the computational overhead, low speed communications or
slowest CPU performance [18].

In this paper, a new technique is used to parallelize the
master–slave model. The master–slave model is one of the
most popular parallelization models. The reason of choosing
this model in our proposed approach is to utilize all the CPU
hardware power. Hence, it is possible to use all the cores
in the CPU to achieve the most desirable solutions and to
reduce the runtime.

4.2 � The proposed method

In the previous section, the multi-objective ABC algorithm
was described. We have seen that the result of the run of
this algorithm is a set of solutions called non-dominated
solutions (NDSs). The solution set forms the Pareto front in
the multi-objective problems. The number of non-dominated

Author's personal copy

Requirements Engineering	

1 3

solutions is considered one of the criteria for evaluation of
multi-objective algorithms. Thus, the more the number of
non-dominated solutions obtained by the algorithm, the bet-
ter. It also has a positive effect on other criteria for evalu-
ation of the algorithm. Therefore, in the proposed method,
we intend to create a parallel algorithm similar to the mas-
ter–slave model in order to obtain higher-quality solutions
from the serial algorithms. In this method, we intend to use
the master–slave model in the shared memory architecture
with a new innovation. In the proposed method, one of the
cores (e.g., core 1) becomes the master and the other cores
are set as slaves. All cores (masters and slaves) run a multi-
objective (ABC) algorithm on themselves completely under
a same condition. That is, during the execution of all cores,
the number of iterations, the number of colony solutions
and other parameters of the algorithm are equal. Each core
will create a colony randomly. At the end of the execution
of the MOABC algorithm, all slaves send their NDSs to the
master core. The master core arranges the NDS sets of slaves
and NDS resulting from the execution on its own core. It
further removes repeated solutions so that we could have a
general solution set of non-dominated solutions without any
repetitions. In this case, the number of unique solutions will
be far greater than the NDS set obtained from a serial algo-
rithm and will result in a set of higher-quality solutions to
the problem. To better understand the proposed method, the
results of concurrent execution of the two multi-objective
algorithms are shown in Fig. 4. In this example, the objective
f1 is minimized and the objective f2 is maximized. In Fig. 4,
the Pareto front is shown by a green dashed line on the left;
the NDSs related to Algorithm 1 (9 solutions) are shown by
blue dots; the NDSs related to Algorithm 2 (7 solutions) are
shown by red circles. In Fig. 3 (right-hand side), the union
of the set of NDSs derived from two algorithms produced a

solution set with a higher number of non-dominated solu-
tions (13 solutions). In the proposed method, the iterative
solutions will be considered only once. The union of the set
of NDSs derived from two algorithms is shown with blue
stars in Fig. 4.

Unlike the conventional methods of using a master–slave
model in which slaves were idle until they were assigned the
execution of part of the algorithm, in the proposed method,
the execution of a whole algorithm is assigned to slaves.
In this case, the hardware capacity is fully used, and slaves
(cores) are not idle. This innovation in the master–slave
model results in the optimal use of the hardware. It should be
noted that most computers are equipped with multi-proces-
sor and multi-core CPUs. Therefore, the proposed method
is applicable on a wide range of computers, even personal
ones [28].

In the proposed method, unlike other modes of the mas-
ter–slave model, the number of communications between
masters and slaves is very small. In fact, slaves send their
set of NDS to the master only once at the end of the execu-
tion of algorithms. The master core will only wait for the set
of NDSs from the slaves, at the end of the execution of its
algorithm, and will further sort them.

The proposed algorithm is a synchronism method because
the master must wait until the end of the execution of algo-
rithm for receiving the solution set of all slaves. However,
the waiting time would be very negligible. This is because
the processing power of the cores of a computer is the same
(homogeneity), and the algorithm being executed on all
cores is exactly the same. In case the processing power of
cores is different, the master must wait until the solution set
of the slowest core is obtained. In this situation, taking into
account the number of less iterations for slower cores can
reduce the run time of this algorithm such that we do not

Master

Slaves

Fitness

Individual

…

Fig. 3   An example of the master–slave model Fig. 4   An example of taking the union of the set of NDSs

Author's personal copy

	 Requirements Engineering

1 3

have to be forced to bear their execution delay. In the pro-
posed method, the work load is approximately equal on all
cores. It is only the master core that has an extra responsible
for sorting the incoming solution set and removing the itera-
tive solutions. If we ignore the time the parallel processing
overhead imposes, the time to send the NDSs to the master
once and the time needed to remove the iterative solutions
from the overall set of solutions, it is safe to say that the
execution time of the algorithm in parallel mode does not
differ from that of the serial algorithm, yet we will obtain
a higher-quality set of solutions. We recall that our main
purpose of proposing this method is to improve the quality
of the solution set of the NRP. Figure 5 shows the flowchart
of the proposed method.

The right-hand side of Fig. 5 shows n MOABC algo-
rithms run parallel on separate cores. After the end of each
algorithm, the NDS archive of that algorithm will be sent
to the master’s core. The master sorting out the NDS sets
derived by the slaves determines the unique set of NDS as
the final solution of the problem and displays the statistical
indices.

The development team chooses one solution of the
final NDS according to the cost and satisfaction level for
development in the next release. In fact, each solution of
the NDS corresponds to a subset of the proposed require-
ments. For example, the solution from NDS, which provides
the highest level of satisfaction with a 20% cost limit, is
{r4, r7, r11, r12, r19, r33r41, r48}.

In this problem, each solution is related to a subset of
the requirements. In fact, when a development team chooses
a solution, they should develop those related require-
ments. In the initial phase of each release, developer team
faces with a set of requirements and should choose the best
subset of the requirements for developing according to this
method.

In the first step, the proposed method selects an optimal
subset of requirements for development in the next release.
The selected subset can help the development team to make
a better decision. That is, the development team uses a smart
decision-making approach instead of traditional and taste-
ful choices. After that, in the second step, the development
team implements the selected subset. The amount the sat-
isfaction of each requirement is obtained from clients sur-
veys. If the client prioritization requirements have changed
significantly during the development, the development team
can make changes to the selected subset subject to the con-
straints (such as cost limit) are not violated.

Remark 4.1  In this paper, a new approach of using the
master–slave model in a shared memory architecture has
presented. In this approach, the load of the processing of
the master and the slaves is almost equal. In a multi-core
computer, with starting the PMOABC algorithm, a core is

selected as the master core and the rest of the cores are cho-
sen as slaves. By commanding the master, all the cores run
the MOABC algorithm simultaneously and independently.
Each core generates a random colony to run the MOABC
algorithm. Here, the conditions for the execution of all algo-
rithms are the same. After the run of the MOABC algorithm,
the cores send the NDS sets to the master core. The master
core obtains a total set of solutions based on the union of
these NDS sets and removing the repeated solutions. Due
to the complexity of the problem, in the run of each core,
several unique solutions may be discovered that have not
been discovered in the other cores run. The union of these
sets of solutions creates a set with a greater number of NDS
than the serial mode.

5 � Experiments and results

In this section, experiments, datasets and scenarios evalu-
ated for the problem are reviewed and explained. Then,
the results of the proposed method are presented based on
multiple criteria and further compared with those of similar
works [4].

5.1 � Datasets and test criteria

All tests are conducted on a system with an Intel core i7,
1.60 GHz processor, a 4 GB RAM and Windows 7, 64
bits. The software used to execute the proposed method
is MATLAB version R2014b. Since we have used random
algorithms in these tests, each algorithm is executed 100
times independently, and their mean, standard deviation
and related results are presented. The proposed method has
been tested on two datasets. In addition, four development
cost limits (30%, 50%, 70% and 100% of the total cost of
development) are considered on each dataset. Therefore,
it can be said that the proposed method is tested with four
samples from each dataset, or in fact with eight samples
from the NRP. The first dataset is adopted from [19].
This dataset includes 20 requirements and 5 clients. In
Table 1, the development cost of each requirement, the
priority level of each requirement for each client and the
interaction between the requirements are listed. The cli-
ents assigned a priority level in the range [1,5] to each
requirement. These scores show the customer satisfaction
rate toward that requirement for development in the next
release. The lowest score given to each requirement is 1.
In fact, this means that the client has the least interest in
the development of this requirement in the next release.
However, score 5 means that clients are most interested
in the development of requirement in the next release.
The development cost of each requirement is estimated to

Author's personal copy

Requirements Engineering	

1 3

range between 1 and 10 units. In this dataset, two interac-
tions, namely implication and combination, are considered
between the requirements.

The second dataset was introduced by Del Sagrado et al.
[10] which included 100 requirements, 5 clients and 44
interactions between requirements. In Table 2, the scores of
the priority assigned by each customer to each requirement,
interactions between requirements and the development cost
of each requirement that is a value between 1 and 20 are
listed. This dataset is much more complicated than the previ-
ous one which is adopted from a real software development
project. This dataset has 40 implication interactions and 4
combination interactions between requirements.

Each customer carries a different level of importance
(weight) for the software developer company. The level of
importance is used in formula (2). Table 3 shows the weight
of each client in the two datasets. In this table, 1 is the least
importance and 5 is the most.

Since the problem is defined in a multi-objective environ-
ment, the quality of the solutions for each test is evaluated
in terms of the criteria of multi-objective problems. We use
three indicators to assess the quality in accordance with pre-
vious works carried out for this problem.

The first quality index is hypervolume (HV). This index
calculates the volume covered by the non-dominated set of
solutions Q by means of formula (4).

Recieve NDS_ archive all algorithms

Initialize control parameters
Generate colony

Evaluate colony
Fast nondominate sort

Crowding distance calculation
NDS_archive = empty

Start

Condition
satisfied

Yes

Employed Bees Phase

Calculate probabilities for
solution

Onlooker Bees Phase

Scout Bees Phase

Evaluate colony
Fast nondominate sort

Crowding distance calculation
update NDS_archive

No

Send
NDS_archive

to Master

Start

MOABC

Algorithm 1 master

MOABC MOABC

Algorithm n slave

Algorithm 2 slave

…

Sort & remove repeated solutions

Finish

Calculate HV, ∆-spread, number NDS

Fig. 5   Flowchart

Author's personal copy

	 Requirements Engineering

1 3

HV measures the diversity and convergence of the
obtained Pareto fronts. A Pareto front has a greater HV than
the other if solutions in the better front are more widely
distributed than in the other or some solutions in the better
front dominate solutions in the other.

Algorithms with higher amounts of HV are better. In
order to calculate this indicator, two reference points are
required. Since the problem under consideration has two
objectives, these points were rmin ( obj1min,obj2min )
and rmax ( obj1max,obj2max ). This points containing the
maximum and minimum amounts for the two objectives.
For maximum the hypervolume, both objective function
amounts had to be normalized. The normalization points
used for each dataset are presented in Table 4.

The second quality indicator was the spread achieved by
the set of solutions ( Δ—spread). This indicator calculates
the diversity of the solutions by using the Euclidean dis-
tances between consecutive solutions in the Pareto front.
Pareto fronts with a smaller spread are preferred. Δ—spread
is defined by formula (5).

where di is the Euclidean distance between two consecutive
solutions, d̄ is the mean distance between each pair of solu-
tions, n is the number of solutions in the Pareto front and
df and dl are, respectively, the Euclidean distance from the
first and the last solution in the Pareto front to the extreme
solutions of the optimal Pareto front in the objective space.

The third quality indicator was the number of non-dom-
inated solutions (NDS) found. Pareto fronts with a greater
number of non-dominated solutions are better.

We evaluate our proposed method in two scenarios. In
the first scenario, the proposed method will terminate in all
modes (with any number of execution cores, 2 or 4 cores)
after 10,000 iterations. In this scenario, our purpose is to
show the quality of the solutions obtained by the proposed
method compared to the results given in Chaves-González
et al. [4]. Therefore, all conditions and parameters of the
algorithm are set according to those given in Chaves-
González et al. [4]. The number of population in all algo-
rithms is 40 individuals; the probability of mutation operator
(Prob) is 0.5; and the value of the parameter limitForScout
is 3. This scenario is applied on both datasets.

The second dataset has a long run time due to its com-
plexity and largeness (having 100 requirements). The second
scenario will be introduced for this complex dataset. In the
second scenario, we intend to reduce the run time as the

(4)HV = volume

(|Q|⋃

i=1

vi

)
.

(5)Δ =
dl + df +

∑N−1

i=1
(di − d̄)

dl + df + (n − 1)d
,

Ta
bl

e 
1  

D
at

as
et

 1 r
1

r
2

r
3

r
4

r
5

r
6

r
7

r
8

r
9

r
1
0

r
1
1

r
1
2

r
1
3

r
1
4

r
1
5

r
1
6

r
1
7

r
1
8

r
1
9

r
2
0

c
l 1

4
2

1
2

5
5

2
4

4
4

2
3

4
2

4
4

4
1

3
2

c
l 2

4
4

2
2

4
5

1
4

4
5

2
3

2
4

4
2

3
2

3
1

c
l 3

5
3

3
3

4
5

2
4

4
4

2
4

1
5

4
1

2
3

3
2

c
l 4

4
5

2
3

3
4

2
4

2
3

5
2

3
2

4
3

5
4

3
2

c
l 5

5
4

2
4

5
4

2
4

5
2

4
5

3
4

4
1

1
2

4
1

Eff
or

t
1

4
2

3
4

7
10

2
1

3
2

5
8

2
1

4
10

4
8

4
In

te
ra

ct
io

ns
r
4
⇒

r
8

r
4
⇒

r
1
7

r
8
⇒

r
1
7

r
9
⇒

r
3

r
9
⇒

r
6

r
9
⇒

r
1
2

r
9
⇒

r
1
9

r
1
1
⇒

r
1
9

r
3
⊗

r
1
2

r
1
1
⊗

r
1
3

Author's personal copy

Requirements Engineering	

1 3

Ta
bl

e 
2  

D
at

as
et

 2

r
1

r
2

r
3

r
4

r
5

r
6

r
7

r
8

r
9

r
1
0

r
1
1

r
1
2

r
1
3

r
1
4

r
1
5

r
1
6

r
1
7

r
1
8

r
1
9

r
2
0

c
l 1

1
2

1
1

2
3

3
1

1
3

1
1

3
2

3
2

2
3

1
3

c
l 2

3
2

1
2

1
2

1
2

2
1

2
3

3
2

1
3

2
3

3
1

c
l 3

1
1

1
2

1
1

1
3

2
2

3
3

3
1

3
1

2
2

3
3

c
l 4

3
2

2
1

3
1

3
2

3
2

3
2

1
3

2
3

2
1

3
3

c
l 5

1
2

3
1

3
1

2
3

1
1

2
2

3
1

2
1

1
1

1
3

Eff
or

t
16

19
16

7
19

15
8

10
6

18
15

12
16

20
9

4
16

2
9

3

r
2
1

r
2
2

r
2
3

r
2
4

r
2
5

r
2
6

r
2
7

r
2
8

r
2
9

r
3
0

r
3
1

r
3
2

r
3
3

r
3
4

r
3
5

r
3
6

r
3
7

r
3
8

r
3
9

r
4
0

c
l 1

2
1

1
1

3
3

3
3

1
2

2
3

2
1

2
2

1
3

3
2

c
l 2

3
3

3
2

3
1

2
2

3
3

1
3

2
2

1
2

3
2

3
3

c
l 3

2
1

2
3

2
3

3
1

3
3

3
2

1
2

2
1

1
3

1
2

c
l 4

1
1

1
2

3
3

2
1

1
1

1
2

2
2

3
2

2
3

1
1

c
l 5

1
1

3
2

3
2

2
3

2
3

1
1

3
3

2
2

1
1

2
1

Eff
or

t
2

10
4

2
7

15
8

20
9

11
5

1
17

6
2

16
8

12
18

5

r
4
1

r
4
2

r
4
3

r
4
4

r
4
5

r
4
6

r
4
7

r
4
8

r
4
9

r
5
0

r
5
1

r
5
2

r
5
3

r
5
4

r
5
5

r
5
6

r
5
7

r
5
8

r
5
9

r
6
0

c
l 1

2
2

3
1

1
1

2
2

3
3

3
3

1
3

2
1

3
1

3
1

c
l 2

3
3

1
1

3
2

2
2

1
3

3
3

1
2

2
3

3
2

1
1

c
l 3

1
3

1
3

3
3

3
1

3
2

3
1

2
3

2
3

2
1

2
3

c
l 4

3
1

1
3

1
2

1
1

3
2

2
1

3
2

1
3

3
1

2
3

c
l 5

3
1

1
2

1
2

3
3

2
2

1
3

3
2

3
1

2
1

3
2

Eff
or

t
6

14
15

20
14

9
16

6
6

6
6

2
17

8
1

3
14

16
18

7

r
6
1

r
6
2

r
6
3

r
6
4

r
6
5

r
6
6

r
6
7

r
6
8

r
6
9

r
7
0

r
7
1

r
7
2

r
7
3

r
7
4

r
7
5

r
7
6

r
7
7

r
7
8

r
7
9

r
8
0

c
l 1

2
2

3
3

1
3

1
3

2
3

1
3

2
3

1
1

2
3

3
1

c
l 2

1
3

2
3

1
2

1
2

3
1

1
3

1
3

2
1

3
3

1
2

c
l 3

1
1

2
3

3
1

3
3

3
1

3
1

3
1

1
2

3
3

1
2

c
l 4

2
2

3
3

3
1

2
1

2
1

2
3

3
2

2
2

1
3

3
1

c
l 5

2
2

1
2

1
3

2
1

2
1

2
2

3
2

1
3

2
3

1
3

Eff
or

t
10

7
16

19
17

15
11

8
20

1
5

8
3

15
4

20
10

20
3

20

r
8
1

r
8
2

r
8
3

r
8
4

r
8
5

r
8
6

r
8
7

r
8
8

r
8
9

r
9
0

r
9
1

r
9
2

r
9
3

r
9
4

r
9
5

r
9
6

r
9
7

r
9
8

r
9
9

r
1
0
0

c
l 1

2
1

3
1

2
2

2
1

3
2

2
3

1
1

1
2

1
3

1
1

c
l 2

1
2

1
2

2
1

3
2

2
2

3
2

2
3

2
2

1
3

1
1

c
l 3

1
2

3
2

3
1

2
2

3
3

3
3

2
1

1
2

3
3

2
3

c
l 4

3
1

2
2

2
1

1
1

3
1

1
3

3
1

2
1

2
3

1
3

c
l 5

3
2

1
2

2
2

2
1

3
3

3
1

1
3

1
3

3
3

3
3

Author's personal copy

	 Requirements Engineering

1 3

first objective and, to some extent, improve the quality of
solutions as the second objective. Therefore, to reduce run
time in the proposed method, increasing the number of cores
reduces the total number of iterations. In this scenario, serial
algorithms are run with 10,000 iterations. In addition, 16,000
iterations in total are considered for the proposed method;
that is, provided that the proposed method is run with
two cores, the algorithm of each core has 8000 iterations
(8000 × 2 = 16,000). In the event that it runs with four cores,
each algorithm will have 4000 iterations (4000 × 4 = 16,000),
and finally, in case it runs with eight cores, each algorithm
will have 2000 iterations (2000 × 8 = 16,000). The number
of the colony members and other parameters are similar to
the first scenario, which is the same in all algorithms. In
this scenario, the proposed method performs 6000 itera-
tions more than the serial mode. This yields higher-quality
solutions compared to those of the serial mode. However,
considerable improvement is achieved in terms of runtime.
For example, in the eight-core mode, each core performs
2000 iterations instead of one core doing 10,000 iterations.
In the next subsection, the results and analysis of the two
scenarios are presented.

5.2 � Experiments and results

In this section, the results of the proposed method are
presented. They are further compared with those of pre-
vious studies. Chaves-González et al. [4] used the results
of algorithms MOABC, ACO, NSGA-II and GRASP to
solve the NRP. The first scenario is applied on both data-
sets. In Table 5, the mean and standard deviation of the
results, which were obtained by 100 independent runs of
the proposed method and other algorithms on dataset 1, are
presented.Ta

bl
e 

2  
(c

on
tin

ue
d)

r
8
1

r
8
2

r
8
3

r
8
4

r
8
5

r
8
6

r
8
7

r
8
8

r
8
9

r
9
0

r
9
1

r
9
2

r
9
3

r
9
4

r
9
5

r
9
6

r
9
7

r
9
8

r
9
9

r
1
0
0

Eff
or

t
10

16
19

3
12

16
15

1
6

7
15

18
4

7
2

7
8

7
7

3
In

te
ra

ct
io

ns
r
2
⇒

r
2
4

r
3
⇒

r
2
6

r
3
⇒

r
2
7

r
3
⇒

r
2
8

r
3
⇒

r
2
9

r
4
⇒

r
5

r
6
⇒

r
7

r
7
⇒

r
3
0

r
1
0
⇒

r
3
2

r
1
0
⇒

r
3
3

r
1
4
⇒

r
3
2

r
1
4
⇒

r
3
4

r
1
4
⇒

r
3
7

r
1
4
⇒

r
3
8

r
1
6
⇒

r
3
9

r
1
6
⇒

r
4
0

r
1
7
⇒

r
4
3

r
2
9
⇒

r
4
9

r
2
9
⇒

r
5
0

r
2
9
⇒

r
5
1

r
3
0
⇒

r
5
2

r
3
0
⇒

r
5
3

r
3
1
⇒

r
5
5

r
3
2
⇒

r
5
6

r
3
2
⇒

r
5
7

r
3
3
⇒

r
5
8

r
3
6
⇒

r
6
1

r
3
9
⇒

r
6
3

r
4
0
⇒

r
6
4

r
4
3
⇒

r
6
5

r
4
6
⇒

r
6
8

r
4
7
⇒

r
7
0

r
5
5
⇒

r
7
9

r
5
6
⇒

r
8
0

r
5
7
⇒

r
8
0

r
6
2
⇒

r
8
3

r
6
2
⇒

r
8
4

r
2
1
⊗

r
2
2

r
3
2
⊗

r
3
3

r
4
6
⊗

r
4
7

r
6
5
⊗

r
6
6

Table 3   The importance of clients to the developer company

Clients weights cl
1

cl
2

cl
3

cl
4

cl
5

Dataset 1 1 4 2 3 4
Dataset 2 1 5 3 3 1

Table 4   Points of reference for
two datasets Dataset 1

rmin (costmin,
satisfactionmin) = (0, 0)

rmax (costmax,
satisfactionmax) = (85, 893)

Dataset 2
rmin (costmin,

satisfactionmin) = (0, 0)
rmax (costmax,

satisfactionmax) = (1037, 2656)

Author's personal copy

Requirements Engineering	

1 3

In the first scenario, the proposed method was run by
two algorithms, namely PMOABC 2 and PMOABC 4. The
number of iterations in all algorithms is 10,000, and the
number of colony members is 40. Four cost constraints,
i.e., 30%, 50%, 70% and 100%, were considered. As given
in Table 5, the GRASP algorithm has achieved the weakest
results due to its greedy and local searches. The NSGA II
algorithm by the use of crossover and mutation opera-
tors searched the problem space slightly better than the
GRASP algorithm in all tests and obtained a bit better HV
value than the GRASP algorithm. However, both algo-
rithms have poor results. The ACS algorithm, using ants
swarm intelligence, obtained higher HV and NDS values
than the two GRASP and NSGA II algorithms. Among the
serial algorithms, the MOABC algorithm yielded the best
solutions. In fact, this algorithm could search the problem
space better than the other serial algorithms. In addition to
uniformly distributed NDS on the Pareto front, the more
amounts of HV and number of NDS confirm superior of
this algorithm rather than other serial algorithms. We
now discuss the results of the proposed algorithms. The

PMOABC 2 algorithm runs by two MOABC algorithms
simultaneously. Then, it selects the union of the NDS set
as its own solution set. It can be seen that the number
of NDS in this algorithm has exceeded that of the serial
algorithms. Subsequently, the spread criterion is decreased
and the HV criterion is increased. For example, in the 70%
test of PMOABC 2 algorithm, it is detected about 16 NDS
more than GRASP and ACS algorithms. Moreover, HV
and spread values have improved significantly. In all tests,
the superiority of the PMOABC 2 algorithm is evident
compared to MOABC serial algorithm. In the Pareto front
diagram, the more uniformly the NDSs are distributed,
the better it is. This, in turn, reduces the amount of the
spread criterion. In addition, the more the available solu-
tion set in NDS yields larger area bounded by the graph,
the higher quality it is. As mentioned in the previous
subsection, to calculate the HV criterion, the fitness solu-
tions are normalized for both objectives. Subsequently,
the HV value is calculated. The PMOABC 4 algorithm
that runs four MOABC algorithms simultaneously could
produce the best results in all criteria. For example, for

Table 5   Results of the
execution of algorithms in the
first scenario on dataset 1

Effort limit Hypervolume Spread Number of NDSs Time (s)

Dataset 1 30%
 GRASP 7.708% ± 3.66e−1 0.64 ± 0.09 11.37 ± 1.47 –
 NSGA-II 9.015% ± 1.12 0.76 ± 0.09 9.69 ± 2.09 –
 ACS 10.283% ± 6.57e−2 0.52 ± 0.03 13.66 ± 13.66 –
 MOABC 41.88% ± 1.15e−5 0.52 ± 0.01 15.00 ± 0.00 7.81
 PMOABC 2 45.04% ± 2.29e−3 0.48 ± 0.10 17.16 ± 1.45 8.07
 PMOABC 4 46.65% ± 2.70e−4 0.46 ± 0.16 20.26 ± 0.87 9.51

Dataset 1 50%
 GRASP 19.114% ± 3.50e−1 0.73 ± 0.07 17.65 ± 2.22 –
 NSGA-II 20.652% ± 1.60 0.79 ± 0.07 11.30 ± 1.82 –
 ACS 23.912% ± 6.75e−2 0.52 ± 0.01 17.75 ± 0.61 –
 MOABC 54.715% ± 2.64 0.48 ± 0.01 23.66 ± 0.48 7.89
 PMOABC 2 56.43% ± 2.19 0.46 ± 0.09 26.31 ± 1.12 8.14
 PMOABC 4 57.29% ± 1.12 0.45 ± 0.08 30.63 ± 0.71 9.56

Dataset 1 70%
 GRASP 32.242% ± 4.96e−1 0.69 ± 0.06 20.26 ± 2.18 –
 NSGA-II 32.157% ± 2.30 0.80 ± 0.07 11.70 ± 1.90 –
 ACS 38.464% ± 7.08e−2 0.48 ± 0.02 20.57 ± 20.57 –
 MOABC 60.855% ± 9.49e−4 0.43 ± 0.01 32.35 ± 0.99 7.92
 PMOABC 2 61.95% ± 0.13 0.41 ± 0.07 36.31 ± 2.07 8.18
 PMOABC 4 62.67% ± 0.22 0.40 ± 0.06 37.54 ± 1.34 9.59

Dataset 1 100%
 GRASP – – – –
 NSGA-II – – – –
 ACS – – – –
 MOABC 63.780% ± 1.28e−3 0.39 ± 0.05 40.55 ± 1.25 7.83
 PMOABC 2 65.18% ± 0.13 0.37 ± 0.03 43.11 ± 1.31 8.06
 PMOABC 4 66.05% ± 0.22 0.36 ± 0.03 44.89 ± 1.02 9.32

Author's personal copy

	 Requirements Engineering

1 3

the test 50%, the most amounts of the NDS (the mean
36.63) resulted among the all algorithms belong to the
PMOABC 4.

It can be seen that the serial (MOABC) algorithm had
shorter run time than that of the parallel mode. The reason
is the presence of parallel processing overhead and com-
munication between master and slave cores. As the number
of cores participating in the proposed method increases, the
total run time slightly increases. Since the hardware and
software executing the algorithms are different [40], the
run time of algorithms GRASP, NSGA-II and ACS was not
compared. It can be seen from the table that quality of the
solutions obtained by the proposed method (PMOABC ×)
for all modes of the cost constraints (30%, 50%, 70% and
100%) was better than that of the serial algorithms executed.
Dataset 1 has had little complexity and few requirements.
Let us now analyze dataset 2, which is much more com-
plicated from the first scenario. In Table 6, the mean and
standard deviation of the results obtained based on 100 inde-
pendent implementation of the proposed method and other
algorithms on dataset 2 are given.

As given in Table 6, the proposed method yielded a
higher-quality solution set due to the concurrent execution
of several algorithms and taking the union of their NDSs
set where the number of NDSs was more than that of the
serial algorithms, HV increased and spread of the solution
set reduced. For example, for the test 30%, PMOABC 4 algo-
rithm could find about 10 NDS more than MOABC, about
70 NDS more than NSGA II and GRASP and also 88 NDS
more than the ACS algorithm. For the test 50%, the value of
HV in the PMOABC 4 algorithm is more than three times
of the HV value in the ACS algorithm. In the same test,
the value of HV in the PMOABC 4 algorithm is about 17%
more than the best serial algorithm (MOABC). In all tests,
the spread value of PMOABC 2 algorithm is lower than that
of the serial algorithms. The same criterion is also more
appropriate in the PMOABC 4 algorithm than the one in the
PMOABC 2 algorithm.

The discovery of most of the NDSs in Pareto front
resulted in a reduction in the average distance between suc-
cessive solutions. On the other hand, the increase in the
number of NDSs in Pareto front and their proportional dis-
tribution led to an increase in the area bounded by Pareto
front (HV) graph. Within all cost constraints considered, the
proposed method has performed better than the serial algo-
rithms. In the proposed method, the number of executing
algorithms (slave core) increased which caused the quality
of solutions and also the runtime increases such that the
best solution was produced by the PMOABC 4 algorithm. It
should be noted that Tables 5 and 6 contain the results of the
run of the algorithms in the first scenario with 10,000 itera-
tions per algorithm. Due to its high complexity (having 100
requirements and 44 interactions between requirements),

dataset 2 has caused algorithms applied on it to have rela-
tively long run time. Therefore, we propose the second sce-
nario for this complex dataset. In the second scenario, we
intend to reduce the run time. Therefore, we adjust the total
number of iterations of the proposed method proportionate
to the number of executor algorithms.

Since the algorithms in serial mode are executed with
10,000 iterations, we consider 16,000 reps in total for the
proposed method. Our purpose is to do more iteration to
obtain higher-quality solutions than those of the serial
mode. In addition, to reduce the run time, we distribute
these 16,000 reps between the executor algorithms (execu-
tor cores). In the PMOABC 2 algorithm, both algorithms
perform 8000 reps; in the PMOAB 4 algorithm, all of four
algorithms perform 4000 reps; and in the PMPABC 8 algo-
rithm, all of eight algorithms perform 2000 reps. The rest of
the parameters of the simulation for this scenario are similar
to that of the previous one. In Table 7, the results of the sec-
ond scenario applied on dataset 2 are given. As the number
of executor cores increases, the quality of solutions improves
and the run time decreases dramatically. The PMOABC 8
algorithm which forms its solution set through taking the
union of eight sets of NDSs has produced the highest qual-
ity solutions. A comparison of the solutions obtained by the
application of the three algorithms in the proposed PMO-
ABC × method indicates that the use of more algorithms
with fewer reps is more desirable than the use of fewer
algorithms with more reps. This issue can be seen through
comparison of PMOABC 8 with PMOABC 2. In these tests,
spread and HV values have improved slightly and slowly, but
the NDS amount reflects the differences better. For example,
for the test 30% test, PMOABC 8 algorithm has detected
about 83 NDS more than the ACS algorithm, about 76 NDS
more than the NSGA II algorithm and 72 NDS more than
the GRASP algorithm. For the test 70%t, the PMOABC 8
algorithm has detected about 4 NDS more than the MOABC
algorithm, about 61 NDS more than the NSGA II algorithm
and 74 NDS more than the ACS algorithm.

In various PMOABC × algorithms, the run time is
decreased as the number of their iterations is reduced (e.g.,
4000 reps to 2000 reps). However, due to the presence of
the parallel processing overhead and sending NDS sets from
slaves to masters, this reduction in time is not in accordance
with the ideal time that is half of this amount. Because ide-
ally, it is expected that the algorithm run time is reduced
approximately by half when the rep count is halved, yet, in
practice, this will not happen due to the presence of over-
heads. In Table 7, the speedup and efficiency rates related to
the algorithms of the proposed method are given. The PMO-
ABC 8 algorithm displayed the best speedup rate among the
algorithms of the proposed method for each of its algorithms
performs only 2000 iterations, while the serial algorithm
performs 10,000 iterations. In addition, the PMOABC 2

Author's personal copy

Requirements Engineering	

1 3

algorithm has the highest rate of efficiency since it only uses
two cores to run the algorithm. In all algorithms simulated
in both scenarios, it can be seen that the algorithm run time
within the cost constraint of 100% is less than the run time
within other cost constraints (30%, 50% and 70%). This is
due to the presence of an auxiliary function when repairing
the solutions obtained by the mutation so that the desired
solution does not violate the limitations of the NRP, i.e., cost
constraints and interaction and/or dependencies between
requirements. In case the cost constraint is considered to be
100%, there will be no cost constraints. Therefore, repairing
the related solutions is done faster which further makes the
overall run time slightly shorter than the other modes with
cost constraints.

The results given in Tables 5, 6 and 7 demonstrate
that PMOABC could find more number of the NDS than
MOABC. This proves that the implementation of several
independent algorithms in parallel situation can result better
solution rather than serial algorithms.

Providing more number of NDS automatically improves
criteria of HV and spread. MOABC was the strongest

algorithm among other serial algorithms based on previous
researches. Then, PMOABC result is very better rather to
other serial algorithms.

6 � Conclusion

In this paper, we examined the NRP and formulated it as
a restricted multi-objective optimization problem. We also
proposed a parallel algorithm, based on a master–slave
model for solving the NRP for the first time. In the pro-
posed model, implemented in the shared memory archi-
tecture, multiple MOABC algorithms are simultaneously
run on the master core and slave cores. At the end of their
performance, the slave cores send their NDSs to the mas-
ter core. The master core considers a general solution set
resulting from the execution of all cores as the general solu-
tion to the problem through sorting and deleting duplicate
solutions. This method, since the NDSs are obtained by the
execution of several algorithms, obtained higher-quality
solutions compared to those of the serial algorithm. In the

Table 6   Results of the
execution of algorithms in the
first scenario on dataset 2

Effort limit Hypervolume Spread Number NDS Time (s)

Dataset 2 30%
 GRASP 4.088 ± 8.55e−3 0.60 ± 0.04 57.99 ± 3.66 –
 NSGA-II 7.920 ± 2.49e−1 0.80 ± 0.07 54.34 ± 8.51 –
 ACS 8.517 ± 6.21e−2 0.68 ± 0.06 47.12 ± 5.44 –
 MOABC 41.232 ± 1.14e−2 0.45 ± 0.02 125.37 ± 7.57 34.65
 PMOABC 2 42.634 ± 0.081 0.44 ± 0.06 131.21 ± 11.20 36.55
 PMOABC 4 42.877 ± 0.072 0.42 ± 0.09 135.33 ± 12.54 40.93

Dataset 2 50%
 GRASP 15.454 ± 6.88e−2 0.74 ± 0.04 75.81 ± 5.81 –
 NSGA-II 18.006 ± 5.20e−1 0.81 ± 0.06 65.54 ± 11.86 –
 ACS 19.159 ± 9.94e−2 0.66 ± 0.06 57.68 ± 5.69 –
 MOABC 51.212 ± 1.17e−2 0.42 ± 0.02 135.93 ± 9.60 33.46
 PMOABC 2 58.672 ± 0.033 0.38 ± 0.06 141.08 ± 13.13 35.71
 PMOABC 4 60.312 ± 0.047 0.38 ± 0.05 143.73 ± 13.81 39.99

Dataset 2 70%
 GRASP 27.943 ± 7.5e−2 0.70 ± 0.03 120.14 ± 7.27 –
 NSGA-II 31.710 ± 8.92e−1 0.77 ± 0.05 83.32 ± 10.52 –
 ACS 32.777 ± 1.14e−1 0.61 ± 0.06 70.98 ± 5.27 –
 MOABC 58.212 ± 7.00e−3 0.38 ± 0.02 139.31 ± 9.93 33.38
 PMOABC 2 60.965 ± 0.022 0.37 ± 0.05 145.17 ± 13.56 34.27
 PMOABC 4 61.872 ± 0.026 0.35 ± 0.06 152.22 ± 14.27 39.14

Dataset 2 100%
 GRASP – – – –
 NSGA-II – – – –
 ACS – – – –
 MOABC 61.702 ± 4.94e−3 0.35 ± 0.03 147.51 ± 9.90 32.78
 PMOABC 2 62.310 ± 0.028 0.34 ± 0.04 158.12 ± 14.28 33.42
 PMOABC 4 62.798 ± 0.071 0.33 ± 0.03 161.39 ± 15.01 40.76

Author's personal copy

	 Requirements Engineering

1 3

proposed method, the concurrent use of several algorithms
has led to the inapplicability of the general solution in local
optimization. In addition, the proposed method makes an
efficient use of the hardware capacity and divides the work-
load almost evenly between the cores. Since the proposed
algorithm was the first parallel algorithm for solving the
NRP, the quality of the solutions obtained by the proposed
method was compared with those of serial algorithms such
as MOABC, ACO, NSGA-II and GRASP. To conduct the
experiments, two datasets were evaluated in previous works.
These datasets contained various requirements and clients
with different levels of importance. Two types of limita-
tions were defined for this problem. The first limitation was
the dependencies between the requirements, and the second
was the cost of product development. Applying these limi-
tations makes us face a restricted optimization problem. In
addition, we considered two different scenarios for doing

the experiments. In the first scenario, the aim of the experi-
ment was to increase the quality of the solutions obtained by
the proposed method compared to that of serial algorithm;
and we could make a significant improvement in the quality
of the solutions. In the second scenario, the first objective
was to reduce the run time, and the second objective was to
improve the quality of solutions, relatively. In this scenario,
increasing the number of algorithms participating in the
proposed approach and reducing the number of iterations
in these algorithms were realized both as objectives of the
scenario. The run time reduced significantly and the qual-
ity of the solutions slightly improved. We now mention a
few examples of researches to be conducted in this area in
the future. The implementation of other parallel processing
models to improve the quality of solutions and to reduce
run time might be interesting topics to work on. The use of
other metaheuristic algorithms in the proposed method, or

Table 7   Results of the second
scenario on dataset 2

Effort limit Hypervolume Spread Number of NDSs Time Speedup Efficiency

Dataset 2 30%
 GRASP 4.088 ± 8.55e−3 0.60 ± 0.04 57.99 ± 3.66 – – –
 NSGA-II 7.920 ± 2.49e−1 0.80 ± 0.07 54.34 ± 8.51 – – –
 ACS 8.517 ± 6.21e−2 0.68 ± 0.06 47.12 ± 5.44 – – –
 MOABC 41.232 ± 1.14e−2 0.45 ± 0.02 125.37 ± 7.57 34.65 – –
 PMOABC 2 41.423 ± 0.072 0.45 ± 0.07 127.32 ± 12.14 28.75 1.20 0.60
 PMOABC 4 41.911 ± 0.068 0.45 ± 0.09 128.84 ± 11.94 14.18 2.44 0.61
 PMOABC 8 42.603 ± 0.091 0.44 ± 0.08 130.21 ± 13.16 7.88 4.39 0.55

Dataset 2 50%
 GRASP 15.454 ± 6.88e−2 0.74 ± 0.04 75.81 ± 5.81 – – –
 NSGA-II 18.006 ± 5.20e−1 0.81 ± 0.06 65.54 ± 11.86 – – –
 ACS 19.159 ± 9.94e−2 0.66 ± 0.06 57.68 ± 5.69 – – –
 MOABC 51.212 ± 1.17e−2 0.42 ± 0.02 135.93 ± 9.60 33.46 – –
 PMOABC 2 51.643 ± 0.041 0.44 ± 0.05 138.88 ± 10.96 27.04 1.23 0.62
 PMOABC 4 51.928 ± 0.055 0.42 ± 0.06 139.92 ± 13.22 13.76 2.43 0.61
 PMOABC 8 52.171 ± 0.050 0.41 ± 0.03 140.62 ± 13.78 7.63 4.38 0.55

Dataset 2 70%
 GRASP 27.943 ± 7.5e−2 0.70 ± 0.03 120.14 ± 7.27 – – –
 NSGA-II 31.710 ± 8.92e−1 0.77 ± 0.05 83.32 ± 10.52 – – –
 ACS 32.777 ± 1.14e−1 0.61 ± 0.06 70.98 ± 5.27 – – –
 MOABC 58.212 ± 7.00e−3 0.38 ± 0.02 139.31 ± 9.93 33.38 – –
 PMOABC 2 58.831 ± 0.052 0.37 ± 0.05 142.42 ± 12.86 27.30 1.22 0.61
 PMOABC 4 59.343 ± 0.036 0.37 ± 0.02 143.93 ± 13.77 13.63 2.45 0.61
 PMOABC 8 60.344 ± 0.042 0.37 ± 0.03 144.64 ± 14.24 8.48 3.94 0.49

Dataset 2 100%
 GRASP – – – – – –
 NSGA-II – – – – – –
 ACS – – – – – –
 MOABC 61.702 ± 4.94e−3 0.35 ± 0.03 147.51 ± 9.90 32.78 – –
 PMOABC 2 61.890 ± 0.033 0.35 ± 0.04 151.73 ± 12.66 26.44 1.24 0.62
 PMOABC 4 61.983 ± 0.062 0.35 ± 0.03 152.31 ± 15.08 13.13 2.50 0.62
 PMOABC 8 62.021 ± 0.069 0.34 ± 0.05 154.03 ± 16.22 6.83 4.79 0.60

Author's personal copy

Requirements Engineering	

1 3

a combination of all metaheuristic algorithms together, and
their implementation in the proposed method can improve
the quality of solutions.

Acknowledgements  The authors would like to thank the anonymous
reviewers and the editor in chief for their insightful comments and
suggestions.

References

	 1.	 Alrezaamiri H, Ebrahimnejad A, Motameni H (2018) Software
requirement optimization using a fuzzy artificial chemical reac-
tion optimization algorithm. Soft Comput 23:1–16

	 2.	 Bagnall AJ, Rayward-Smith VJ, Whittley IM (2001) The next
release problem. Inf Softw Technol 43(14):883–890

	 3.	 Chaves-González JM, Pérez-Toledano MA (2015) Differential
evolution with Pareto tournament for the multi-objective next
release problem. Appl Math Comput 252:1–13

	 4.	 Chaves-González JM, Pérez-Toledano MA, Navasa A (2015)
Software requirement optimization using a multiobjective
swarm intelligence evolutionary algorithm. Knowl-Based Syst
83:105–115

	 5.	 Chaves-González JM, Vega-Rodríguez MA, Granado-Criado JM
(2013) A multiobjective swarm intelligence approach based on
artificial bee colony for reliable DNA sequence design. Eng Appl
Artif Intell 26(9):2045–2057

	 6.	 Colanzi TE, Vergilio SR (2016) A feature-driven crossover opera-
tor for multi-objective and evolutionary optimization of product
line architectures. J Syst Softw 121:126–143

	 7.	 Deb K (2001) Multi-objective optimization using evolutionary
algorithms, vol 16. Wiley, Hoboken

	 8.	 Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans
Evol Comput 6(2):182–197

	 9.	 De la Hidalga AN, Hardisty A, Jones A (2016) SCRAM–
CK: applying a collaborative requirements engineering pro-
cess for designing a web based e-science toolkit. Requir Eng
21(1):107–129

	10.	 Del Sagrado J, Del Aguila IM, Orellana FJ (2015) Multi-objective
ant colony optimization for requirements selection. Empir Softw
Eng 20(3):577–610

	11.	 Delgarm N, Sajadi B, Delgarm S (2016) Multi-objective optimiza-
tion of building energy performance and indoor thermal comfort:
a new method using artificial bee colony (ABC). Energy Build
131:42–53

	12.	 De Souza JT, Maia CLB, Ferreira TN, Carmo RAF, Brasil MMA
(2011) An ant colony optimization approach to the software
release planning with dependent requirements. In: Cohen MB,
Ó Cinnéide M (eds) Search based software engineering. SSBSE
2011. Lecture notes in computer science, vol 6956. Springer, Ber-
lin, Heidelberg

	13.	 Dragicevic S, Celar S, Turic M (2017) Bayesian network model
for task effort estimation in agile software development. J Syst
Softw 127:109–119

	14.	 Durillo JJ, Zhang Y, Alba E, Harman M, Nebro AJ (2011) A
study of the bi-objective next release problem. Empir Softw Eng
16(1):29–60

	15.	 Ebrahimnejad A, Tavana M, Alrezaamiri H (2016) A novel arti-
ficial bee colony algorithm for shortest path problems with fuzzy
arc weights. Measurement 93:48–56

	16.	 Femmer H, Fernández DM, Wagner S, Eder S (2017) Rapid qual-
ity assurance with requirements smells. J Syst Softw 123:190–213

	17.	 Ferrari A, Spoletini P, Gnesi S (2016) Ambiguity and tacit
knowledge in requirements elicitation interviews. Requir Eng
21(3):333–355

	18.	 Gong YJ, Chen WN, Zhan ZH, Zhang J, Li Y, Zhang Q, Li JJ
(2015) Distributed evolutionary algorithms and their models: a
survey of the state-of-the-art. Appl Soft Comput 34:286–300

	19.	 Greer D, Ruhe G (2004) Software release planning: an
evolutionary and iterative approach. Inf Softw Technol
46(4):243–253

	20.	 Harman M, Mansouri SA, Zhang Y (2012) Search based software
engineering: Trends. Tech Appl, ACM Comput Surv 5:11

	21.	 Iimura I, Hamaguchi K, Ito T, Nakayama S (2005) A study of
distributed parallel processing for queen ant strategy in ant col-
ony optimization. In: Sixth international conference on parallel
and distributed computing, applications and technologies, 2005.
PDCAT 2005, IEEE, pp 553–557

	22.	 Jayatilleke S, Lai R, Reed K (2018) A method of requirements
change analysis. Requir Eng 23(4):493–508

	23.	 Jiang H, Zhang J, Xuan J, Ren Z, Hu Y (2010) A hybrid ACO
algorithm for the next release problem. In: 2010 2nd international
conference on software engineering and data mining (SEDM),
IEEE, pp 166–171

	24.	 Karlsson J (1996) Software requirements prioritizing. In: Pro-
ceedings of the second international conference on requirements
engineering, IEEE, pp 110–116

	25.	 Knowles J, Corne D (1999) The pareto archived evolution strat-
egy: a new baseline algorithm for pareto multiobjective optimisa-
tion. In: Proceedings of the 1999 congress on evolutionary com-
putation, 1999. CEC 99, IEEE, vol 1, pp 98–105

	26.	 Lindsjørn Y, Sjøberg DI, Dingsøyr T, Bergersen GR, Dybå T
(2016) Teamwork quality and project success in software devel-
opment: a survey of agile development teams. J Syst Softw
122:274–286

	27.	 Liu L, Zhou Q, Liu J, Cao Z (2017) Requirements cybernet-
ics: elicitation based on user behavioral data. J Syst Softw
124:187–194

	28.	 Meade A, Deeptimahanti DK, Buckley J, Collins JJ (2017) An
empirical study of data decomposition for software parallelization.
J Syst Softw 125:401–416

	29.	 Misaghian N, Motameni H (2016) An approach for requirements
prioritization based on tensor decomposition. Requir Eng. https​
://doi.org/10.1007/s0076​6-016-0262-6

	30.	 Nebro AJ, Durillo JJ, Luna F, Dorronsoro B, Alba E (2009)
MOCell: a cellular genetic algorithm for multiobjective optimi-
zation. Int J Intell Syst 24(7):726–746

	31.	 Parejo JA, Sánchez AB, Segura S, Ruiz-Cortés A, Lopez-Her-
rejon RE, Egyed A (2016) Multi-objective test case prioritiza-
tion in highly configurable systems: a case study. J Syst Softw
122:287–310

	32.	 Prakash D, Prakash N (2017) A multifactor approach for elicita-
tion of Information requirements of data warehouses. Requir Eng.
https​://doi.org/10.1007/s0076​6-017-0283-9

	33.	 Pitangueira AM, Maciel RSP, Barros M (2015) Software require-
ments selection and prioritization using SBSE approaches: a
systematic review and mapping of the literature. J Syst Softw
103:267–280

	34.	 Rubio-Largo Á, Vega-Rodríguez MA, González-Álvarez DL
(2015) Multiobjective swarm intelligence for the traffic groom-
ing problem. Comput Optim Appl 60(2):479–511

	35.	 Thew S, Sutcliffe A (2018) Value-based requirements engineering:
method and experience. Requir Eng 23(4):443–464

	36.	 Veerapen N, Ochoa G, Harman M, Burke EK (2015) An integer
linear programming approach to the single and bi-objective next
release problem. Inf Softw Technol 65:1–13

	37.	 Vianna DS, Arroyo JEC (2004) A GRASP algorithm for the multi-
objective knapsack problem. In: 24th international conference of

Author's personal copy

https://doi.org/10.1007/s00766-016-0262-6
https://doi.org/10.1007/s00766-016-0262-6
https://doi.org/10.1007/s00766-017-0283-9

	 Requirements Engineering

1 3

the Chilean computer science society, 2004. SCCC 2004, IEEE,
pp 69–75

	38.	 Wessing S, Preuss M (2016) On multiobjective selection for mul-
timodal optimization. Comput Optim Appl 63(3):875–902

	39.	 Xiang Y, Peng Y, Zhong Y, Chen Z, Lu X, Zhong X (2014) A
particle swarm inspired multi-elitist artificial bee colony algo-
rithm for real-parameter optimization. Comput Optim Appl
57(2):493–516

	40.	 Yurtkuran A, Emel E (2015) An adaptive artificial bee col-
ony algorithm for global optimization. Appl Math Comput
271:1004–1023

	41.	 Yu W, Zhang W (2006) Study on function optimization based on
master-slave structure genetic algorithm. In: 2006 8th interna-
tional conference on signal processing, IEEE, vol 3

	42.	 Zhang Y, Harman M, Mansouri SA (2007) The multi-objective
next release problem. In: Proceedings of the 9th annual conference
on Genetic and evolutionary computation, ACM, pp 1129–1137

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Author's personal copy

	Parallel multi-objective artificial bee colony algorithm for software requirement optimization
	Abstract
	1 Introduction
	2 Literature review
	3 The problem of selecting the optimal subset of multi-objective requirements
	3.1 The problem of selecting the requirements
	3.2 Multi-objective NRP formulation
	3.3 The multi-objective ABC algorithm and its applications

	4 Parallel multi-objective artificial bee colony
	4.1 The master–slave model
	4.2 The proposed method

	5 Experiments and results
	5.1 Datasets and test criteria
	5.2 Experiments and results

	6 Conclusion
	Acknowledgements
	References

