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Abstract
In incremental software development approaches, the product is developed in various releases. In each release, a set of 
requirements is proposed for the development. Usually, due to lack of funds, lack of time and dependency between require-
ments, there is no possibility to develop all the required requirements. There are two conflicting objectives for choosing an 
optimal subset of the requirements: increasing customer satisfaction and reducing development costs. This problem is known 
as the next release problem (NRP) and is categorized as an NP-hard problem. Unlike the standard version of the NRP, we 
formulate this problem as a restricted multi-objective optimization problem. There exist metaheuristic algorithms for solving 
this problem performed as serials. In this paper, we introduce a parallel algorithm based on the master–slave model in order 
to improve the quality of the solutions. Based on the criteria of multi-objective problems, the quality of the obtained solu-
tion is compared with several metaheuristic algorithms. Two scenarios and two different datasets are used for experiments. 
Results indicate that the proposed method in the first scenario would highly improve the quality of solutions. Moreover, 
the method reduces execution time significantly through improvement in the quality of the solution in the second scenario.

Keywords  Software requirements · Multi-objective algorithm · Next release problem · Master–slave model

1  Introduction

In the past years, we have seen the growth of complexity and 
software capabilities. Large software systems have sensi-
tive and complex development processes. One of the most 
important stages of the software development is the “recog-
nition requirements” stage. Carelessness at this stage of the 
software development may lead to an increase in estimated 
costs of product development, increase in product devel-
opment time, reducing product quality, declining customer 

satisfaction and even project failure [22]. Therefore, it has 
always been tried to recognize customer needs and demands 
as fast and accurately as possible using new methods and 
to consider them in the software product [16, 35]. In some 
software development methods such as incremental develop-
ment methods, the product is developed in several releases. 
In these methods, like in agile methods, the developer faces a 
set of requirements that need to be developed in each release 
[13]. Due to technical problems in the development of some 
requirements, lack of time, lack of funds and conflicting 
requirements of projects, it is almost impossible to develop 
all proposed requirements in every release [29]. Therefore, it 
is important to choose an optimal subset of the developmen-
tal requirements that can provide maximum satisfaction to 
customers, with minimal time and cost for the development 
team. In large projects with a large number of requirements, 
it is very difficult to choose the optimal subset. That is why 
it is essential to propose a method to determine the opti-
mal subset of requirements and to present the result of the 
method to software engineers to help them in decision mak-
ing. Choosing the optimal subset of requirements which is 
called the next release problem (NRP) is a NP-hard problem 
because of having at least two conflicting objectives. The 
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cost of software development is defined as the sum of indi-
vidual developed requirements [36]. If customer satisfaction 
increases and cost reduction is taken into account, it is clear 
that by reducing the cost of software development, require-
ments are less developed and customer satisfaction reduces 
accordingly. On the other hand, by developing most of the 
proposed requirements, customer satisfaction increases, 
but it also leads to an increase in the cost of development. 
Because of the contradictory nature of these two objectives, 
traditional and single-objective optimization methods cannot 
find the optimal subset of requirements [38]. For this reason, 
the use of multi-objective evolutionary algorithms for solv-
ing this issue is necessary [1, 7]. In recent years, researchers 
have used different multi-objective evolutionary algorithms 
for solving NRPs. All these algorithms were implemented 
serially and obtained solutions with different qualities due 
to their ability to find the solution space. Examples of these 
algorithms are greedy randomized adaptive search proce-
dure (GRASP) [37], non-dominated sorting genetic algo-
rithm (NSGA-II) [8], ant colony system (ACS) [10], multi-
objective artificial bee colony (MOABC) [4] and differential 
evolution with Pareto tournament (DEPT) [3] algorithms. 
Among them, the multi-objective ABC algorithm produced 
the highest quality solutions. In this paper, we intend to 
use the parallel processing technique and execute several 
MOABC algorithms [4] in the master–slave model simulta-
neously in order to obtain higher-quality solutions than those 
of the serial mode.

Due to the complexities and limitations of the NRP, 
serial metaheuristic algorithms may not be able to probe 
the problem space well and provide acceptable solutions in 
a short time. We run some MOABC algorithms in parallel 
with a new technique to alleviate this problem. Because each 
MOABC algorithm has a different random initial population 
and also operators have random choices, it may be possible 
to find solutions in each run of the MOABC algorithm that 
other algorithms could not detect. In this technique, a set 
of non-dominated solutions (NDSs) is derived from each 
algorithm. Eventually, these sets are merged to form the 
overall solution set. The overall solution set of the problem 
derived from the implementation of this technique based 
on multi-objective criteria such as the number of NDSs, 
HV and the spread of solutions has better quality than the 
set of solutions obtained from the serial implementation of 
a MOABC algorithm. Also, the presented technique can 
reduce the runtime by adopting some policies which will be 
discussed later. This is the first time a parallel algorithm is 
used for search-based software engineering (SBSE) [20] to 
solve the multi-objective NRP. Results of the parallel execu-
tion of the proposed algorithm are compared with those of 
serial parallel algorithms such as NSGA-II, ACO, MOABC 
and GRASP. The results confirm that the proposed approach 
yields higher-quality solutions than the serial executions.

The rest of the paper is organized as follows. In Sect. 2, 
we present the literature review. In Sect. 3, the multi-objec-
tive NRP is discussed and formulated. In Sect. 4, the mas-
ter–slave parallel processing model and the proposed method 
are introduced. In Sect.  5, the experiments and results 
obtained are analyzed. Finally, in Sect. 6, implications of 
the study, future works in this domain and conclusion are 
presented.

2 � Literature review

The selection of an optimal subset of requirements for the 
development in the next software release is a very complex 
task. In fact, it is considered as one of the NP-hard-related 
problems. This means that traditional methods cannot find 
the optimal solution to this problem at the correct time. 
Search-based software engineering (SBSE) is one of the 
research areas in which search-based optimization algo-
rithms are used to solve problems related to the software 
engineering. The NRP is also covered in this area [20]. 
Pitangueira et al. [33] carried out classification, analysis and 
proper assessment of previous works on issues related to the 
selection and prioritization of the requirements of the soft-
ware. Recently, suggested methods for solving the NRP were 
mostly in the form of metaheuristic optimization algorithms.

One of the first efforts to solve the NRP is done by Karls-
son [24] in which the author used two methods, namely ana-
lytical hierarchy process (AHP) and quality function deploy-
ment (QFD), to select and prioritize software requirements. 
In the QFD method, the requirements were prioritized, and 
in the AHP method, the requirements were classified. In 
large projects with a large number of requirements, these 
methods are not effective due to the many comparisons 
drawn and long run times. Bagnall et al. [2] introduced three 
methods for selecting the optimal subset of requirements. 
The first method used linear programming to obtain the 
exact solution of the problem. In the second method, three 
greedy algorithms were used for solving the same problem. 
The third method used two local search algorithms, namely 
hill climbing and simulated annealing. In NRPs with a low 
number of requirements, the linear programming method 
finds the exact solution of the problem at the correct time. 
However, the linear programming method cannot find the 
solution in a reasonable time when the size of problem is 
large. The other two methods presented in this article could 
not find qualified solutions due to their low search capabili-
ties in the solution space.

Metaheuristic optimization algorithms used to solve the 
NRP fall into two categories: single objective and multi-
objective. In the single-objective optimization algorithms, 
the algorithm turns the multi-objective problem into a 
single-objective problem by assigning a specific weight to 
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each goal and merging them. Greer and Ruhe [19] used the 
genetic algorithm to select the optimal subset of require-
ments. De Souza et al. [12] solved the NRP using the ACO 
algorithm. Jiang et al. [23] combined the ACO algorithm 
with a local search algorithm to select the optimal subset of 
requirements. The aim of this approach was to increase the 
ability of the algorithm to find quality solutions.

In recent years, the NRP has been solved mostly in the 
form of a multi-objective optimization problem. In multi-
objective problems, none of the objectives is superior to oth-
ers. In fact, the importance of all objectives is the same. The 
NRP was first formulated as multi-objective by Zhang et al. 
[42]. Durillo et al. [14] analyzed the multi-objective optimi-
zation algorithms, Pareto archived evolution strategy (PAES) 
[25], NSGA-II [8] and multi-objective cellular genetic algo-
rithm (MOCell) [30] to solve the NRP. Del Sagrado et al. 
[10] proposed the multi-objective ACS algorithm to solve 
this problem. In that paper, the interaction between require-
ments was incorporated in the datasets for the first time. 
Chaves-González and Pérez-Toledano [3] used the differ-
ential evolution algorithm to solve this problem and con-
sidered the interaction between requirements. Parejo et al. 
[31] used the integer linear programming method in both 
single-objective and multi-objective models. These models 
were able to find the exact solution in the single-objective 
model and small-sized multi-objective problems. But their 
proposed method in large multi-objective problems will not 
have proper run time. Chaves-González et al. [4] applied the 
MOABC algorithm to select the optimal set of requirements. 
High-quality results were obtained by this algorithm. Here, 
the interaction between requirements was considered and 
two datasets assessed in the article were made available. In 
the present study, we intend to run the MOABC algorithm 
introduced in Chaves-González et al. [4] through the parallel 
way and in the master–slave model. The union of the results 
obtained by running all algorithms in parallel gives a sig-
nificant and quality solution set. So far, no parallel algorithm 
has been introduced for solving the NRP. For this reason, 
the quality of the results obtained by the proposed method 
is compared with those of the serial algorithm introduced in 
previous studies.

3 � The problem of selecting the optimal 
subset of multi‑objective requirements

Single-objective problems are problems with inherently one 
objective. If there are several different objectives in the prob-
lem, a main objective will be formed when certain weights 
are assigned to each objective, and they are then combined 
into a single objective [6]. Suppose there are three goals, 
namely f1, f2 and f3 in a problem. In addition, we intend 
to aggregate them into a single-objective problem through 

assigning certain weights to these objectives. In formula (1), 
it can be seen that the combination of these three objectives 
forms the main objective of the problem:

In single-objective problems, there is usually a unique 
solution to the problem. However, in multi-objective prob-
lems, the objectives are not combined together, and there 
is no unique solution. Rather, there is a set of solutions, 
none having superiority over another. This solution set is 
referred to as non-dominated solutions. This solution set in 
the multi-objective problems figured out the Pareto fron-
tier [31]. Suppose we have an n-objective problem, and let 
x = [x1, x2,… , xn] and y =

[
y1, y2,… , yn

]
 denote the two 

feasible solutions of this problem. Solution x is dominant 
over solution y if x is better than or equal to y for all n objec-
tives. Also, there should be at least one objective xi where 
x is strictly better than in y . Otherwise, the two objectives 
are non-dominant, i.e., neither objective is dominant over 
another. Three solutions are shown in Fig. 1. The complete 
solutions to the objectives f1 and f2 are at point 0. Solu-
tion A is dominant over solution C because, for every two 
objectives, solution A is of higher quality. f1(A) < f1(C) and 
f2(A) < f2(C) . However, the two solutions A and B are non-
dominated by one another for each one is dominant over the 
other in on objective.

3.1 � The problem of selecting the requirements

In all software engineering projects, proper selection and 
elicitation of requirements are an important and critical 
task. To identify and elicit the requirements properly in 
the early stages of product development, various methods 

(1)W1 ∗ f1 +W2 ∗ f2 +W3 ∗ f3 = F.

Fig. 1   The Pareto front diagram
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have been introduced [9, 17, 27, 32]. However, due to the 
presence of numerous and sometimes contradictory fac-
tors, proper selection of the requirements that need to be 
developed poses a great challenge to software engineers. In 
agile development methods in which a product is developed 
in various releases, the very challenge becomes even more 
serious [26]. Problems such as the presence of customers 
with different views and interests, difference between the 
levels of importance of customers for developer companies, 
factors affecting the market and companies’ tendencies to 
consider the needs of new customers make selection very 
difficult. Despite all these problems, software engineers have 
to select an optimal subset of proposed requirements allow-
ing for maximum satisfaction for customers, as well as the 
lowest cost of development for a software company [10]. In 
addition, the presence of interactions between requirements 
creates a serious limitation in the selection of requirements. 
There are different types of interactions and dependencies 
between requirements which appear to impose restrictions 
on the problem. Del Sagrado et al. [10] classified the interac-
tions between requirements into four major groups:

•	 Implication ri ⇒ rj . A requirement rj cannot be imple-
mented if a requirement ri has not been chosen yet.

•	 Combination ri ⊕ rj . A requirement ri cannot be chosen 
separately from a requirement rj.

•	 Exclusion ri ⊗ rj . A requirement ri cannot be chosen 
together with a requirement rj.

•	 Modification The development of the requirement ri 
implies that some other requirements change their satis-
faction or implementation effort.

There is a major advantage in considering the NRP as a 
multi-objective one rather than a weighted single-objective 
one. In the multi-objective problem, software engineers 
find a set of non-dominated solutions rather than one good 
solution. The solution set makes up the Pareto front which 
enables the developer team to analyze the cost and satisfac-
tion. For example, the developer team can conclude from the 
Pareto front graph how much it would additionally cost it if 
it requests a 15 percent increase in customer satisfaction. It 
can also compute the amount of saved money by decreasing 
customer satisfaction by 5 percent [42].

3.2 � Multi‑objective NRP formulation

In the multi-objective NRP (MONRP), n requirements are 
proposed for development in the next release. We consider 
this set as R =

{
r1, r2,… , rn

}
 . Each requirement has a cost 

of development represented as E =
{
e1, e2,… , en

}
 . Assume 

that n requirements of the set R were proposed by m clients 
as C =

{
c1, c2,… , cm

}
 . Each client has an importance level 

for the company. The importance level is assumed to be 
W =

{
w1,w2,… , wm

}
.

It is assumed that each client in C gives a value to each 
requirement in R. The value that a requirement rj has for a 
particular client ci is given by an amount vij ≥ 0. A matrix of 
m × n holds all the importance amounts vij. Total satisfaction sj 
of a given requirement rj is calculated as the weighted sum of 
its values for all the clients considered and can be expressed as 
indicated in Eq. (2). The set of the total satisfactions calculated 
in that way is denoted by S =

{
s1, s2,… sn

}
.

where j is the index of requirements set. Since there are six 
requirements, the index j is varied from 1 to 6.

In the MONRP, each solution is displayed as an n-cell 
vector where the ith cell on the vector corresponds to the ith 
requirement in the set R, for i = 1, 2, …,n. A solution is shown 
in Fig. 2.

In each solution, each requirement selected to be developed 
in the next release takes value 1 in its corresponding cell and 
value 0 otherwise. We should be looking to find solutions that 
are non-dominated regarding the satisfaction and cost objec-
tives. Of course, the suggested solutions should meet the limi-
tations considered for the problem. The first limitation is the 
dependence between requirements which were explained in 
the previous section. The second limitation is the maximum 
amount of development costs which is considered by the devel-
oper company. The maximum cost of a product denoted by lc is 
calculated by formula (3) where x is a solution of this problem.

Each solution is valid if it meets the two limitations, namely 
the dependency between requirements and the maximum cost 
of development [4].

3.3 � The multi‑objective ABC algorithm and its 
applications

The results obtained by the multi-objective ABC algorithm 
[4] to solve the NRP on the basis of multi-objective problem 
measurement criteria were of higher quality than those of 
other algorithms for solving this problem. Their analysis of 
the results showed that the proposed algorithm can efficiently 
generate high-quality solutions. These were evaluated by 

(2)sj =

m∑

i=1

wi ∗ vij j = 1, 2,… , 6,

(3)
∑

j∈x

ej ≤ lc.

Fig. 2   Structure of a solution
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comparing them with different proposals (in terms of multi-
objective metrics). The results generated by the ABC algo-
rithm surpass those generated in other relevant work in the 
literature like NSGA II, GRASP and ACS. For example, their 
technique can obtain a HV of over 60% for the most complex 
dataset managed, while the other approaches published cannot 
obtain an HV of more than 40% for the same dataset. Because 
of the complexity of the NRP, we intend to continue to improve 
the quality of the solutions to this problem. In this article, we 
intend to perform the simultaneous running of several multi-
objective ABC algorithms in parallel in a master–slave model, 
and obtain a higher-quality solution set compared to that of the 
serial MOABC algorithm by means of the union of their non-
dominated archive of solutions. In this section, the MOABC 
algorithm [4] which is the basis of our article is described. 
The algorithm is composed of three main steps, and each step 
is related to the activity of one type of bees. In this algorithm, 
there are three types of bees: employed, onlooker and scout 
bees. Employed bees search the environment to find a new 
food source and return the hive upon finding one. Through 
dance performances, they inform the onlooker bees of the 
location of the food source. Every onlooker bee in the hive 
selects a food source at random after obtaining the employed 
bees’ information in order to launch more searches in that 
area. The better the food source, the greater the chances of 
selection by onlooker bees. The third type of bees is scout 
bees. Employed bees that abandon their food source become a 
scout bee. They move in the area randomly to find another food 
source. In [4], the authors combined two interesting ideas from 
other famous multi-objective algorithms with their own algo-
rithm. Their first idea was to utilize the non-dominated sorting 
technique from the NSGA-II algorithm [8]. According to this 
technique, the population solutions were grouped according to 
dominance rank. The second idea of the PAES algorithm [25] 
was to use the concept of a non-dominated solution archive in 
order to store the best solutions found during implementation 
in their archives.

In Algorithm 1, MOABC pseudocode is shown to solve 
the NRP [4]. In this algorithm, NEB is the number of 
employed bees; NOB is the number of onlooker bees; Prob 
is the mutation probability; LimitForScout is the parameter 
related to the scout bees. The related algorithm generates a 
random solution for every employed bee in the first step so 
that the colony is shaped (second line in algorithm 1). In the 
colony created, all limitations defined in the problem are 
met so that the solutions generated are valid. After creating 
the colony, solutions are evaluated based on formulas (2) 
and (3) which determine their level of satisfaction and cost, 
respectively (third and fourth lines in Algorithm 1). Colony-
based solutions are sorted according to non-dominated ranks 
and crowding distance. If a solution has less dominance 
ranking than another solution, or if equal, it has a greater 
crowding distance, considered a better solution. Before the 

main loop of algorithm starts, the non-dominated solution 
set (NDS_archive) is set to null. The main loop of the algo-
rithm (lines 6 to 30) includes three steps of searching, one 
step of sorting, and storing the solutions. At the stage of the 
employed bees’ search (lines 7 to 11), each employed bee 
creates mutations on its corresponding solution to create a 
new solution. To ensure that the solutions resulting from 
the mutation do not violate the limitations of the problem, a 
function validates them. It corrects the solution so that the 
solutions will always remain valid [4]. If the new solution 
is of higher quality (regarding the dominance and crowding 
distance criteria) than the parent solution, it will be replaced 
and would otherwise be discarded. After the employed bees’ 
work (in line 13) is finished, a vector including the prob-
ability of selection of any food source is created for the next 
step. The higher the quality of the food source, the more 
likely its being selected. Lines 15 to 19 are related to the 
stage of the onlooker bees search. Each onlooker bee that is 
randomly generated based on the probability vector at the 
end of the previous stage selects a food source to search and 
apply the practice of mutation. The solution resulting from 
mutation is checked to ensure its validity, and if necessary, 
it is repaired. Like the previous stage, if the new solution is 
of higher quality than the parent one, it will be replaced and 
would otherwise be discarded. Lines 20 to 25 are related to 
scout bees.

1: % Generate and evaluate the colony C
2: C = random Generation Of Employed Bees (|NEB)
3: C = fast Non Dominated Sort (C, NEB)
4: C = crowding Distance Calculation (C, NEB)
5: NDS _ archive = empty
6: while (not stop condition) 
7:     % Employed bees search stage
8:      for i = 1 to NEB 
9:         mutated Bee = explore Solution (Ci, Prob)
10:       Ci = update Employed Bee (Ci, mutated Bee)
11:   end
12:    % Generate a probability vector using the employed bees
13:    prob Vector = generate Probability Vector (C, NEB)
14:    % Onlooker bees search stage
15:    for i = NEB to NOB 
16:       Cchosen = choose Employed Bee (prob Vector, C, NEB)
17:       mutated Bee =  explore Solution (Cchosen, Prob)
18:       Cchosen = update Onlooker Bee (Cchosen, mutated Bee)
19:    end
20:    %Scout bees search stage
21:    for i = 1 to NEB 
22:       if Ci. Iterations > limit For Scout then
23:          Ci = replace With Scout Bee ()
24:      end
25:    end
26:    %Sort the colony by quality and update the Pareto
         solutions archive
27:    C = fast Non Dominated Sort (C)
28:    C = crowding Distance Calculation (C)
29:    NDS _ archive = update NDS Archive (C)
30: end 
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Each employed bee that is not successful as many as the 
LimitForScout parameter value in its local queries, leaves 
the food source and turns into a scout bee. Searching the 
problem space, the bee produces a new random solution, 
and from then on, works on this food source. In lines 27 and 
28, the colony solutions are sorted based on non-dominated 
ranks and crowding distance. In line 29, the non-dominated 
solutions are stored in NDS_archive. The main loop is 
repeated until the termination condition is reached. In each 
iteration, the non-dominated solutions are stored in NDS_
archive. Due to its high ability, the ABC algorithm is used 
in many problems. The algorithm has many applications 
in solving various problems either as multi-objective or as 
single objective. In [15, 39, 40], the single-objective (ABC) 
algorithm and in [5, 11, 34], the multi-objective (ABC) algo-
rithm were used to solve the problem.

4 � Parallel multi‑objective artificial bee 
colony

In the last section, the multi-objective ABC algorithm was 
introduced as a serial algorithm. The metaheuristic algo-
rithms in spite of all their ability run into trouble in some 
of the major and complex problems, and there is always a 
need for their improvement. In this section, we intend to 
improve the solutions of the NRP using the master–slave 
parallel programming model. Therefore, the parallel multi-
objective artificial bee colony (PMOABC) is introduced. In 
what follows, detailed description of this algorithm is given. 
We first describe the master–slave model.

4.1 � The master–slave model

In recent years, the use of parallel programming for 
metaheuristic algorithms has gained greater attention, espe-
cially when serial metaheuristic algorithms did not have sat-
isfactory runtime and solution quality. Parallel evolutionary 
algorithms can be classified from different aspects.

From an architectural perspective, these algorithms can 
fall into either the shared memory or distributed memory 
architecture. In the shared memory architecture, algorithms 
run in parallel on the cores of a computer or threads of a 
processor, and communication is established through writing 
on the shared memory. However, in the distributed memory 
architecture, algorithms run on different computers, and 
communication between the computers is achieved through 
message passing [18].

From another aspect, classification of these algorithms 
fall into two categories, namely distributed population mod-
els and distributed dimension models. Distributed popula-
tion models include the master–slave model, the Iceland 
model, the cell model and the hierarchical model which 

parallelize an evolution task at population, individual or 
operation levels. The second group includes distributed 
dimensions models such as coevolution and multi-agent 
models which focus on reducing the problem size [18].

In the master–slave model, a processor or core is selected 
as the master, and the rest of the core serves as the slaves 
for the master core. The master usually delegates the hard 
work or heavy computing tasks to the slaves and waits for 
results of their works. The master–slave model is shown in 
Fig. 3. In this figure, the master sends individuals to slaves 
for determining their fitness and then receives the fitness 
amounts from slaves.

In recent years, metaheuristic algorithms which were 
usually run in parallel in the master–slave model appeared 
as two common forms. In the first form, the master core 
executed the main part of the algorithm. It also assigned 
the tasks of calculating the fitness of solutions and updat-
ing solutions to the core of slaves and would then wait for 
a response from them [21]. The master–slave model might 
appear inefficient for problems where the processing time 
related to the computations assigned to the slaves is not high. 
This is because communication between masters and slaves 
imposes more time. In the second common form of using the 
master–slave model, the master would carry out all computa-
tions related to the algorithm in each iteration, and then, it 
would assign the obtained solutions to the slaves for further 
searches (local search) and would receive the results from 
them. A solution replaces the parent solution if a higher-
quality solution is obtained in the local search [41]. The per-
formance of distributed computations is measured according 
to two criteria, namely speedup and efficiency. The speedup 
rate equals the serial execution time of the algorithm divided 
by the parallel execution time of the algorithm. The amount 
of efficiency is defined as the speedup rate divided by the 
number of cores (or processors) participating in the pro-
cess. In practice, these two criteria may be affected due to 
the computational overhead, low speed communications or 
slowest CPU performance [18].

In this paper, a new technique is used to parallelize the 
master–slave model. The master–slave model is one of the 
most popular parallelization models. The reason of choosing 
this model in our proposed approach is to utilize all the CPU 
hardware power. Hence, it is possible to use all the cores 
in the CPU to achieve the most desirable solutions and to 
reduce the runtime.

4.2 � The proposed method

In the previous section, the multi-objective ABC algorithm 
was described. We have seen that the result of the run of 
this algorithm is a set of solutions called non-dominated 
solutions (NDSs). The solution set forms the Pareto front in 
the multi-objective problems. The number of non-dominated 
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solutions is considered one of the criteria for evaluation of 
multi-objective algorithms. Thus, the more the number of 
non-dominated solutions obtained by the algorithm, the bet-
ter. It also has a positive effect on other criteria for evalu-
ation of the algorithm. Therefore, in the proposed method, 
we intend to create a parallel algorithm similar to the mas-
ter–slave model in order to obtain higher-quality solutions 
from the serial algorithms. In this method, we intend to use 
the master–slave model in the shared memory architecture 
with a new innovation. In the proposed method, one of the 
cores (e.g., core 1) becomes the master and the other cores 
are set as slaves. All cores (masters and slaves) run a multi-
objective (ABC) algorithm on themselves completely under 
a same condition. That is, during the execution of all cores, 
the number of iterations, the number of colony solutions 
and other parameters of the algorithm are equal. Each core 
will create a colony randomly. At the end of the execution 
of the MOABC algorithm, all slaves send their NDSs to the 
master core. The master core arranges the NDS sets of slaves 
and NDS resulting from the execution on its own core. It 
further removes repeated solutions so that we could have a 
general solution set of non-dominated solutions without any 
repetitions. In this case, the number of unique solutions will 
be far greater than the NDS set obtained from a serial algo-
rithm and will result in a set of higher-quality solutions to 
the problem. To better understand the proposed method, the 
results of concurrent execution of the two multi-objective 
algorithms are shown in Fig. 4. In this example, the objective 
f1 is minimized and the objective f2 is maximized. In Fig. 4, 
the Pareto front is shown by a green dashed line on the left; 
the NDSs related to Algorithm 1 (9 solutions) are shown by 
blue dots; the NDSs related to Algorithm 2 (7 solutions) are 
shown by red circles. In Fig. 3 (right-hand side), the union 
of the set of NDSs derived from two algorithms produced a 

solution set with a higher number of non-dominated solu-
tions (13 solutions). In the proposed method, the iterative 
solutions will be considered only once. The union of the set 
of NDSs derived from two algorithms is shown with blue 
stars in Fig. 4.

Unlike the conventional methods of using a master–slave 
model in which slaves were idle until they were assigned the 
execution of part of the algorithm, in the proposed method, 
the execution of a whole algorithm is assigned to slaves. 
In this case, the hardware capacity is fully used, and slaves 
(cores) are not idle. This innovation in the master–slave 
model results in the optimal use of the hardware. It should be 
noted that most computers are equipped with multi-proces-
sor and multi-core CPUs. Therefore, the proposed method 
is applicable on a wide range of computers, even personal 
ones [28].

In the proposed method, unlike other modes of the mas-
ter–slave model, the number of communications between 
masters and slaves is very small. In fact, slaves send their 
set of NDS to the master only once at the end of the execu-
tion of algorithms. The master core will only wait for the set 
of NDSs from the slaves, at the end of the execution of its 
algorithm, and will further sort them.

The proposed algorithm is a synchronism method because 
the master must wait until the end of the execution of algo-
rithm for receiving the solution set of all slaves. However, 
the waiting time would be very negligible. This is because 
the processing power of the cores of a computer is the same 
(homogeneity), and the algorithm being executed on all 
cores is exactly the same. In case the processing power of 
cores is different, the master must wait until the solution set 
of the slowest core is obtained. In this situation, taking into 
account the number of less iterations for slower cores can 
reduce the run time of this algorithm such that we do not 

Master

Slaves

Fitness

Individual

…

Fig. 3   An example of the master–slave model Fig. 4   An example of taking the union of the set of NDSs
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have to be forced to bear their execution delay. In the pro-
posed method, the work load is approximately equal on all 
cores. It is only the master core that has an extra responsible 
for sorting the incoming solution set and removing the itera-
tive solutions. If we ignore the time the parallel processing 
overhead imposes, the time to send the NDSs to the master 
once and the time needed to remove the iterative solutions 
from the overall set of solutions, it is safe to say that the 
execution time of the algorithm in parallel mode does not 
differ from that of the serial algorithm, yet we will obtain 
a higher-quality set of solutions. We recall that our main 
purpose of proposing this method is to improve the quality 
of the solution set of the NRP. Figure 5 shows the flowchart 
of the proposed method.

The right-hand side of Fig. 5 shows n MOABC algo-
rithms run parallel on separate cores. After the end of each 
algorithm, the NDS archive of that algorithm will be sent 
to the master’s core. The master sorting out the NDS sets 
derived by the slaves determines the unique set of NDS as 
the final solution of the problem and displays the statistical 
indices.

The development team chooses one solution of the 
final NDS according to the cost and satisfaction level for 
development in the next release. In fact, each solution of 
the NDS corresponds to a subset of the proposed require-
ments. For example, the solution from NDS, which provides 
the highest level of satisfaction with a 20% cost limit, is 
{r4, r7, r11, r12, r19, r33r41, r48}.

In this problem, each solution is related to a subset of 
the requirements. In fact, when a development team chooses 
a solution, they should develop those related require-
ments. In the initial phase of each release, developer team 
faces with a set of requirements and should choose the best 
subset of the requirements for developing according to this 
method.

In the first step, the proposed method selects an optimal 
subset of requirements for development in the next release. 
The selected subset can help the development team to make 
a better decision. That is, the development team uses a smart 
decision-making approach instead of traditional and taste-
ful choices. After that, in the second step, the development 
team implements the selected subset. The amount the sat-
isfaction of each requirement is obtained from clients sur-
veys. If the client prioritization requirements have changed 
significantly during the development, the development team 
can make changes to the selected subset subject to the con-
straints (such as cost limit) are not violated.

Remark 4.1  In this paper, a new approach of using the 
master–slave model in a shared memory architecture has 
presented. In this approach, the load of the processing of 
the master and the slaves is almost equal. In a multi-core 
computer, with starting the PMOABC algorithm, a core is 

selected as the master core and the rest of the cores are cho-
sen as slaves. By commanding the master, all the cores run 
the MOABC algorithm simultaneously and independently. 
Each core generates a random colony to run the MOABC 
algorithm. Here, the conditions for the execution of all algo-
rithms are the same. After the run of the MOABC algorithm, 
the cores send the NDS sets to the master core. The master 
core obtains a total set of solutions based on the union of 
these NDS sets and removing the repeated solutions. Due 
to the complexity of the problem, in the run of each core, 
several unique solutions may be discovered that have not 
been discovered in the other cores run. The union of these 
sets of solutions creates a set with a greater number of NDS 
than the serial mode.

5 � Experiments and results

In this section, experiments, datasets and scenarios evalu-
ated for the problem are reviewed and explained. Then, 
the results of the proposed method are presented based on 
multiple criteria and further compared with those of similar 
works [4].

5.1 � Datasets and test criteria

All tests are conducted on a system with an Intel core i7, 
1.60 GHz processor, a 4 GB RAM and Windows 7, 64 
bits. The software used to execute the proposed method 
is MATLAB version R2014b. Since we have used random 
algorithms in these tests, each algorithm is executed 100 
times independently, and their mean, standard deviation 
and related results are presented. The proposed method has 
been tested on two datasets. In addition, four development 
cost limits (30%, 50%, 70% and 100% of the total cost of 
development) are considered on each dataset. Therefore, 
it can be said that the proposed method is tested with four 
samples from each dataset, or in fact with eight samples 
from the NRP. The first dataset is adopted from [19]. 
This dataset includes 20 requirements and 5 clients. In 
Table 1, the development cost of each requirement, the 
priority level of each requirement for each client and the 
interaction between the requirements are listed. The cli-
ents assigned a priority level in the range [1,5] to each 
requirement. These scores show the customer satisfaction 
rate toward that requirement for development in the next 
release. The lowest score given to each requirement is 1. 
In fact, this means that the client has the least interest in 
the development of this requirement in the next release. 
However, score 5 means that clients are most interested 
in the development of requirement in the next release. 
The development cost of each requirement is estimated to 
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range between 1 and 10 units. In this dataset, two interac-
tions, namely implication and combination, are considered 
between the requirements.

The second dataset was introduced by Del Sagrado et al. 
[10] which included 100 requirements, 5 clients and 44 
interactions between requirements. In Table 2, the scores of 
the priority assigned by each customer to each requirement, 
interactions between requirements and the development cost 
of each requirement that is a value between 1 and 20 are 
listed. This dataset is much more complicated than the previ-
ous one which is adopted from a real software development 
project. This dataset has 40 implication interactions and 4 
combination interactions between requirements.

Each customer carries a different level of importance 
(weight) for the software developer company. The level of 
importance is used in formula (2). Table 3 shows the weight 
of each client in the two datasets. In this table, 1 is the least 
importance and 5 is the most.

Since the problem is defined in a multi-objective environ-
ment, the quality of the solutions for each test is evaluated 
in terms of the criteria of multi-objective problems. We use 
three indicators to assess the quality in accordance with pre-
vious works carried out for this problem.

The first quality index is hypervolume (HV). This index 
calculates the volume covered by the non-dominated set of 
solutions Q by means of formula (4).

Recieve NDS_ archive all algorithms

Initialize control parameters
Generate colony

Evaluate colony
Fast nondominate sort

Crowding distance calculation
NDS_archive = empty

Start

Condition 
satisfied

Yes

Employed Bees Phase

Calculate probabilities for 
solution

Onlooker Bees Phase

Scout Bees Phase

Evaluate colony
Fast nondominate sort

Crowding distance calculation
update NDS_archive 

No

Send 
NDS_archive 

to Master

Start

MOABC

Algorithm 1 master

MOABC MOABC

Algorithm n slave

Algorithm 2 slave

…

Sort & remove repeated solutions

Finish

Calculate HV, ∆-spread, number NDS

Fig. 5   Flowchart

Author's personal copy



	 Requirements Engineering

1 3

HV measures the diversity and convergence of the 
obtained Pareto fronts. A Pareto front has a greater HV than 
the other if solutions in the better front are more widely 
distributed than in the other or some solutions in the better 
front dominate solutions in the other.

Algorithms with higher amounts of HV are better. In 
order to calculate this indicator, two reference points are 
required. Since the problem under consideration has two 
objectives, these points were rmin ( obj1min,obj2min ) 
and rmax ( obj1max,obj2max ). This points containing the 
maximum and minimum amounts for the two objectives. 
For maximum the hypervolume, both objective function 
amounts had to be normalized. The normalization points 
used for each dataset are presented in Table 4.

The second quality indicator was the spread achieved by 
the set of solutions ( Δ—spread). This indicator calculates 
the diversity of the solutions by using the Euclidean dis-
tances between consecutive solutions in the Pareto front. 
Pareto fronts with a smaller spread are preferred. Δ—spread 
is defined by formula (5).

where di is the Euclidean distance between two consecutive 
solutions, d̄ is the mean distance between each pair of solu-
tions, n is the number of solutions in the Pareto front and 
df  and dl are, respectively, the Euclidean distance from the 
first and the last solution in the Pareto front to the extreme 
solutions of the optimal Pareto front in the objective space.

The third quality indicator was the number of non-dom-
inated solutions (NDS) found. Pareto fronts with a greater 
number of non-dominated solutions are better.

We evaluate our proposed method in two scenarios. In 
the first scenario, the proposed method will terminate in all 
modes (with any number of execution cores, 2 or 4 cores) 
after 10,000 iterations. In this scenario, our purpose is to 
show the quality of the solutions obtained by the proposed 
method compared to the results given in Chaves-González 
et al. [4]. Therefore, all conditions and parameters of the 
algorithm are set according to those given in Chaves-
González et al. [4]. The number of population in all algo-
rithms is 40 individuals; the probability of mutation operator 
(Prob) is 0.5; and the value of the parameter limitForScout 
is 3. This scenario is applied on both datasets.

The second dataset has a long run time due to its com-
plexity and largeness (having 100 requirements). The second 
scenario will be introduced for this complex dataset. In the 
second scenario, we intend to reduce the run time as the 

(4)HV = volume

( |Q|⋃

i=1

vi

)
.

(5)Δ =
dl + df +

∑N−1

i=1
(di − d̄)

dl + df + (n − 1)d
,
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first objective and, to some extent, improve the quality of 
solutions as the second objective. Therefore, to reduce run 
time in the proposed method, increasing the number of cores 
reduces the total number of iterations. In this scenario, serial 
algorithms are run with 10,000 iterations. In addition, 16,000 
iterations in total are considered for the proposed method; 
that is, provided that the proposed method is run with 
two cores, the algorithm of each core has 8000 iterations 
(8000 × 2 = 16,000). In the event that it runs with four cores, 
each algorithm will have 4000 iterations (4000 × 4 = 16,000), 
and finally, in case it runs with eight cores, each algorithm 
will have 2000 iterations (2000 × 8 = 16,000). The number 
of the colony members and other parameters are similar to 
the first scenario, which is the same in all algorithms. In 
this scenario, the proposed method performs 6000 itera-
tions more than the serial mode. This yields higher-quality 
solutions compared to those of the serial mode. However, 
considerable improvement is achieved in terms of runtime. 
For example, in the eight-core mode, each core performs 
2000 iterations instead of one core doing 10,000 iterations. 
In the next subsection, the results and analysis of the two 
scenarios are presented.

5.2 � Experiments and results

In this section, the results of the proposed method are 
presented. They are further compared with those of pre-
vious studies. Chaves-González et al. [4] used the results 
of algorithms MOABC, ACO, NSGA-II and GRASP to 
solve the NRP. The first scenario is applied on both data-
sets. In Table 5, the mean and standard deviation of the 
results, which were obtained by 100 independent runs of 
the proposed method and other algorithms on dataset 1, are 
presented.Ta
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Table 3   The importance of clients to the developer company

Clients weights cl
1

cl
2

cl
3

cl
4

cl
5

Dataset 1 1 4 2 3 4
Dataset 2 1 5 3 3 1

Table 4   Points of reference for 
two datasets Dataset 1

rmin (costmin, 
satisfactionmin) = (0, 0)

rmax (costmax, 
satisfactionmax) = (85, 893)

Dataset 2
rmin (costmin, 

satisfactionmin) = (0, 0)
rmax (costmax, 

satisfactionmax) = (1037, 2656)
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In the first scenario, the proposed method was run by 
two algorithms, namely PMOABC 2 and PMOABC 4. The 
number of iterations in all algorithms is 10,000, and the 
number of colony members is 40. Four cost constraints, 
i.e., 30%, 50%, 70% and 100%, were considered. As given 
in Table 5, the GRASP algorithm has achieved the weakest 
results due to its greedy and local searches. The NSGA II 
algorithm by the use of crossover and mutation opera-
tors searched the problem space slightly better than the 
GRASP algorithm in all tests and obtained a bit better HV 
value than the GRASP algorithm. However, both algo-
rithms have poor results. The ACS algorithm, using ants 
swarm intelligence, obtained higher HV and NDS values 
than the two GRASP and NSGA II algorithms. Among the 
serial algorithms, the MOABC algorithm yielded the best 
solutions. In fact, this algorithm could search the problem 
space better than the other serial algorithms. In addition to 
uniformly distributed NDS on the Pareto front, the more 
amounts of HV and number of NDS confirm superior of 
this algorithm rather than other serial algorithms. We 
now discuss the results of the proposed algorithms. The 

PMOABC 2 algorithm runs by two MOABC algorithms 
simultaneously. Then, it selects the union of the NDS set 
as its own solution set. It can be seen that the number 
of NDS in this algorithm has exceeded that of the serial 
algorithms. Subsequently, the spread criterion is decreased 
and the HV criterion is increased. For example, in the 70% 
test of PMOABC 2 algorithm, it is detected about 16 NDS 
more than GRASP and ACS algorithms. Moreover, HV 
and spread values have improved significantly. In all tests, 
the superiority of the PMOABC 2 algorithm is evident 
compared to MOABC serial algorithm. In the Pareto front 
diagram, the more uniformly the NDSs are distributed, 
the better it is. This, in turn, reduces the amount of the 
spread criterion. In addition, the more the available solu-
tion set in NDS yields larger area bounded by the graph, 
the higher quality it is. As mentioned in the previous 
subsection, to calculate the HV criterion, the fitness solu-
tions are normalized for both objectives. Subsequently, 
the HV value is calculated. The PMOABC 4 algorithm 
that runs four MOABC algorithms simultaneously could 
produce the best results in all criteria. For example, for 

Table 5   Results of the 
execution of algorithms in the 
first scenario on dataset 1

Effort limit Hypervolume Spread Number of NDSs Time (s)

Dataset 1 30%
 GRASP 7.708% ± 3.66e−1 0.64 ± 0.09 11.37 ± 1.47 –
 NSGA-II 9.015% ± 1.12 0.76 ± 0.09 9.69 ± 2.09 –
 ACS 10.283% ± 6.57e−2 0.52 ± 0.03 13.66 ± 13.66 –
 MOABC 41.88% ± 1.15e−5 0.52 ± 0.01 15.00 ± 0.00 7.81
 PMOABC 2 45.04% ± 2.29e−3 0.48 ± 0.10 17.16 ± 1.45 8.07
 PMOABC 4 46.65% ± 2.70e−4 0.46 ± 0.16 20.26 ± 0.87 9.51

Dataset 1 50%
 GRASP 19.114% ± 3.50e−1 0.73 ± 0.07 17.65 ± 2.22 –
 NSGA-II 20.652% ± 1.60 0.79 ± 0.07 11.30 ± 1.82 –
 ACS 23.912% ± 6.75e−2 0.52 ± 0.01 17.75 ± 0.61 –
 MOABC 54.715% ± 2.64 0.48 ± 0.01 23.66 ± 0.48 7.89
 PMOABC 2 56.43% ± 2.19 0.46 ± 0.09 26.31 ± 1.12 8.14
 PMOABC 4 57.29% ± 1.12 0.45 ± 0.08 30.63 ± 0.71 9.56

Dataset 1 70%
 GRASP 32.242% ± 4.96e−1 0.69 ± 0.06 20.26 ± 2.18 –
 NSGA-II 32.157% ± 2.30 0.80 ± 0.07 11.70 ± 1.90 –
 ACS 38.464% ± 7.08e−2 0.48 ± 0.02 20.57 ± 20.57 –
 MOABC 60.855% ± 9.49e−4 0.43 ± 0.01 32.35 ± 0.99 7.92
 PMOABC 2 61.95% ± 0.13 0.41 ± 0.07 36.31 ± 2.07 8.18
 PMOABC 4 62.67% ± 0.22 0.40 ± 0.06 37.54 ± 1.34 9.59

Dataset 1 100%
 GRASP – – – –
 NSGA-II – – – –
 ACS – – – –
 MOABC 63.780% ± 1.28e−3 0.39 ± 0.05 40.55 ± 1.25 7.83
 PMOABC 2 65.18% ± 0.13 0.37 ± 0.03 43.11 ± 1.31 8.06
 PMOABC 4 66.05% ± 0.22 0.36 ± 0.03 44.89 ± 1.02 9.32
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the test 50%, the most amounts of the NDS (the mean 
36.63) resulted among the all algorithms belong to the 
PMOABC 4.

It can be seen that the serial (MOABC) algorithm had 
shorter run time than that of the parallel mode. The reason 
is the presence of parallel processing overhead and com-
munication between master and slave cores. As the number 
of cores participating in the proposed method increases, the 
total run time slightly increases. Since the hardware and 
software executing the algorithms are different [40], the 
run time of algorithms GRASP, NSGA-II and ACS was not 
compared. It can be seen from the table that quality of the 
solutions obtained by the proposed method (PMOABC ×) 
for all modes of the cost constraints (30%, 50%, 70% and 
100%) was better than that of the serial algorithms executed. 
Dataset 1 has had little complexity and few requirements. 
Let us now analyze dataset 2, which is much more com-
plicated from the first scenario. In Table 6, the mean and 
standard deviation of the results obtained based on 100 inde-
pendent implementation of the proposed method and other 
algorithms on dataset 2 are given.

As given in Table 6, the proposed method yielded a 
higher-quality solution set due to the concurrent execution 
of several algorithms and taking the union of their NDSs 
set where the number of NDSs was more than that of the 
serial algorithms, HV increased and spread of the solution 
set reduced. For example, for the test 30%, PMOABC 4 algo-
rithm could find about 10 NDS more than MOABC, about 
70 NDS more than NSGA II and GRASP and also 88 NDS 
more than the ACS algorithm. For the test 50%, the value of 
HV in the PMOABC 4 algorithm is more than three times 
of the HV value in the ACS algorithm. In the same test, 
the value of HV in the PMOABC 4 algorithm is about 17% 
more than the best serial algorithm (MOABC). In all tests, 
the spread value of PMOABC 2 algorithm is lower than that 
of the serial algorithms. The same criterion is also more 
appropriate in the PMOABC 4 algorithm than the one in the 
PMOABC 2 algorithm.

The discovery of most of the NDSs in Pareto front 
resulted in a reduction in the average distance between suc-
cessive solutions. On the other hand, the increase in the 
number of NDSs in Pareto front and their proportional dis-
tribution led to an increase in the area bounded by Pareto 
front (HV) graph. Within all cost constraints considered, the 
proposed method has performed better than the serial algo-
rithms. In the proposed method, the number of executing 
algorithms (slave core) increased which caused the quality 
of solutions and also the runtime increases such that the 
best solution was produced by the PMOABC 4 algorithm. It 
should be noted that Tables 5 and 6 contain the results of the 
run of the algorithms in the first scenario with 10,000 itera-
tions per algorithm. Due to its high complexity (having 100 
requirements and 44 interactions between requirements), 

dataset 2 has caused algorithms applied on it to have rela-
tively long run time. Therefore, we propose the second sce-
nario for this complex dataset. In the second scenario, we 
intend to reduce the run time. Therefore, we adjust the total 
number of iterations of the proposed method proportionate 
to the number of executor algorithms.

Since the algorithms in serial mode are executed with 
10,000 iterations, we consider 16,000 reps in total for the 
proposed method. Our purpose is to do more iteration to 
obtain higher-quality solutions than those of the serial 
mode. In addition, to reduce the run time, we distribute 
these 16,000 reps between the executor algorithms (execu-
tor cores). In the PMOABC 2 algorithm, both algorithms 
perform 8000 reps; in the PMOAB 4 algorithm, all of four 
algorithms perform 4000 reps; and in the PMPABC 8 algo-
rithm, all of eight algorithms perform 2000 reps. The rest of 
the parameters of the simulation for this scenario are similar 
to that of the previous one. In Table 7, the results of the sec-
ond scenario applied on dataset 2 are given. As the number 
of executor cores increases, the quality of solutions improves 
and the run time decreases dramatically. The PMOABC 8 
algorithm which forms its solution set through taking the 
union of eight sets of NDSs has produced the highest qual-
ity solutions. A comparison of the solutions obtained by the 
application of the three algorithms in the proposed PMO-
ABC × method indicates that the use of more algorithms 
with fewer reps is more desirable than the use of fewer 
algorithms with more reps. This issue can be seen through 
comparison of PMOABC 8 with PMOABC 2. In these tests, 
spread and HV values have improved slightly and slowly, but 
the NDS amount reflects the differences better. For example, 
for the test 30% test, PMOABC 8 algorithm has detected 
about 83 NDS more than the ACS algorithm, about 76 NDS 
more than the NSGA II algorithm and 72 NDS more than 
the GRASP algorithm. For the test 70%t, the PMOABC 8 
algorithm has detected about 4 NDS more than the MOABC 
algorithm, about 61 NDS more than the NSGA II algorithm 
and 74 NDS more than the ACS algorithm.

In various PMOABC × algorithms, the run time is 
decreased as the number of their iterations is reduced (e.g., 
4000 reps to 2000 reps). However, due to the presence of 
the parallel processing overhead and sending NDS sets from 
slaves to masters, this reduction in time is not in accordance 
with the ideal time that is half of this amount. Because ide-
ally, it is expected that the algorithm run time is reduced 
approximately by half when the rep count is halved, yet, in 
practice, this will not happen due to the presence of over-
heads. In Table 7, the speedup and efficiency rates related to 
the algorithms of the proposed method are given. The PMO-
ABC 8 algorithm displayed the best speedup rate among the 
algorithms of the proposed method for each of its algorithms 
performs only 2000 iterations, while the serial algorithm 
performs 10,000 iterations. In addition, the PMOABC 2 
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algorithm has the highest rate of efficiency since it only uses 
two cores to run the algorithm. In all algorithms simulated 
in both scenarios, it can be seen that the algorithm run time 
within the cost constraint of 100% is less than the run time 
within other cost constraints (30%, 50% and 70%). This is 
due to the presence of an auxiliary function when repairing 
the solutions obtained by the mutation so that the desired 
solution does not violate the limitations of the NRP, i.e., cost 
constraints and interaction and/or dependencies between 
requirements. In case the cost constraint is considered to be 
100%, there will be no cost constraints. Therefore, repairing 
the related solutions is done faster which further makes the 
overall run time slightly shorter than the other modes with 
cost constraints.

The results given in Tables  5, 6 and 7 demonstrate 
that PMOABC could find more number of the NDS than 
MOABC. This proves that the implementation of several 
independent algorithms in parallel situation can result better 
solution rather than serial algorithms.

Providing more number of NDS automatically improves 
criteria of HV and spread. MOABC was the strongest 

algorithm among other serial algorithms based on previous 
researches. Then, PMOABC result is very better rather to 
other serial algorithms.

6 � Conclusion

In this paper, we examined the NRP and formulated it as 
a restricted multi-objective optimization problem. We also 
proposed a parallel algorithm, based on a master–slave 
model for solving the NRP for the first time. In the pro-
posed model, implemented in the shared memory archi-
tecture, multiple MOABC algorithms are simultaneously 
run on the master core and slave cores. At the end of their 
performance, the slave cores send their NDSs to the mas-
ter core. The master core considers a general solution set 
resulting from the execution of all cores as the general solu-
tion to the problem through sorting and deleting duplicate 
solutions. This method, since the NDSs are obtained by the 
execution of several algorithms, obtained higher-quality 
solutions compared to those of the serial algorithm. In the 

Table 6   Results of the 
execution of algorithms in the 
first scenario on dataset 2

Effort limit Hypervolume Spread Number NDS Time (s)

Dataset 2 30%
 GRASP 4.088 ± 8.55e−3 0.60 ± 0.04 57.99 ± 3.66 –
 NSGA-II 7.920 ± 2.49e−1 0.80 ± 0.07 54.34 ± 8.51 –
 ACS 8.517 ± 6.21e−2 0.68 ± 0.06 47.12 ± 5.44 –
 MOABC 41.232 ± 1.14e−2 0.45 ± 0.02 125.37 ± 7.57 34.65
 PMOABC 2 42.634 ± 0.081 0.44 ± 0.06 131.21 ± 11.20 36.55
 PMOABC 4 42.877 ± 0.072 0.42 ± 0.09 135.33 ± 12.54 40.93

Dataset 2 50%
 GRASP 15.454 ± 6.88e−2 0.74 ± 0.04 75.81 ± 5.81 –
 NSGA-II 18.006 ± 5.20e−1 0.81 ± 0.06 65.54 ± 11.86 –
 ACS 19.159 ± 9.94e−2 0.66 ± 0.06 57.68 ± 5.69 –
 MOABC 51.212 ± 1.17e−2 0.42 ± 0.02 135.93 ± 9.60 33.46
 PMOABC 2 58.672 ± 0.033 0.38 ± 0.06 141.08 ± 13.13 35.71
 PMOABC 4 60.312 ± 0.047 0.38 ± 0.05 143.73 ± 13.81 39.99

Dataset 2 70%
 GRASP 27.943 ± 7.5e−2 0.70 ± 0.03 120.14 ± 7.27 –
 NSGA-II 31.710 ± 8.92e−1 0.77 ± 0.05 83.32 ± 10.52 –
 ACS 32.777 ± 1.14e−1 0.61 ± 0.06 70.98 ± 5.27 –
 MOABC 58.212 ± 7.00e−3 0.38 ± 0.02 139.31 ± 9.93 33.38
 PMOABC 2 60.965 ± 0.022 0.37 ± 0.05 145.17 ± 13.56 34.27
 PMOABC 4 61.872 ± 0.026 0.35 ± 0.06 152.22 ± 14.27 39.14

Dataset 2 100%
 GRASP – – – –
 NSGA-II – – – –
 ACS – – – –
 MOABC 61.702 ± 4.94e−3 0.35 ± 0.03 147.51 ± 9.90 32.78
 PMOABC 2 62.310 ± 0.028 0.34 ± 0.04 158.12 ± 14.28 33.42
 PMOABC 4 62.798 ± 0.071 0.33 ± 0.03 161.39 ± 15.01 40.76
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proposed method, the concurrent use of several algorithms 
has led to the inapplicability of the general solution in local 
optimization. In addition, the proposed method makes an 
efficient use of the hardware capacity and divides the work-
load almost evenly between the cores. Since the proposed 
algorithm was the first parallel algorithm for solving the 
NRP, the quality of the solutions obtained by the proposed 
method was compared with those of serial algorithms such 
as MOABC, ACO, NSGA-II and GRASP. To conduct the 
experiments, two datasets were evaluated in previous works. 
These datasets contained various requirements and clients 
with different levels of importance. Two types of limita-
tions were defined for this problem. The first limitation was 
the dependencies between the requirements, and the second 
was the cost of product development. Applying these limi-
tations makes us face a restricted optimization problem. In 
addition, we considered two different scenarios for doing 

the experiments. In the first scenario, the aim of the experi-
ment was to increase the quality of the solutions obtained by 
the proposed method compared to that of serial algorithm; 
and we could make a significant improvement in the quality 
of the solutions. In the second scenario, the first objective 
was to reduce the run time, and the second objective was to 
improve the quality of solutions, relatively. In this scenario, 
increasing the number of algorithms participating in the 
proposed approach and reducing the number of iterations 
in these algorithms were realized both as objectives of the 
scenario. The run time reduced significantly and the qual-
ity of the solutions slightly improved. We now mention a 
few examples of researches to be conducted in this area in 
the future. The implementation of other parallel processing 
models to improve the quality of solutions and to reduce 
run time might be interesting topics to work on. The use of 
other metaheuristic algorithms in the proposed method, or 

Table 7   Results of the second 
scenario on dataset 2

Effort limit Hypervolume Spread Number of NDSs Time Speedup Efficiency

Dataset 2 30%
 GRASP 4.088 ± 8.55e−3 0.60 ± 0.04 57.99 ± 3.66 – – –
 NSGA-II 7.920 ± 2.49e−1 0.80 ± 0.07 54.34 ± 8.51 – – –
 ACS 8.517 ± 6.21e−2 0.68 ± 0.06 47.12 ± 5.44 – – –
 MOABC 41.232 ± 1.14e−2 0.45 ± 0.02 125.37 ± 7.57 34.65 – –
 PMOABC 2 41.423 ± 0.072 0.45 ± 0.07 127.32 ± 12.14 28.75 1.20 0.60
 PMOABC 4 41.911 ± 0.068 0.45 ± 0.09 128.84 ± 11.94 14.18 2.44 0.61
 PMOABC 8 42.603 ± 0.091 0.44 ± 0.08 130.21 ± 13.16 7.88 4.39 0.55

Dataset 2 50%
 GRASP 15.454 ± 6.88e−2 0.74 ± 0.04 75.81 ± 5.81 – – –
 NSGA-II 18.006 ± 5.20e−1 0.81 ± 0.06 65.54 ± 11.86 – – –
 ACS 19.159 ± 9.94e−2 0.66 ± 0.06 57.68 ± 5.69 – – –
 MOABC 51.212 ± 1.17e−2 0.42 ± 0.02 135.93 ± 9.60 33.46 – –
 PMOABC 2 51.643 ± 0.041 0.44 ± 0.05 138.88 ± 10.96 27.04 1.23 0.62
 PMOABC 4 51.928 ± 0.055 0.42 ± 0.06 139.92 ± 13.22 13.76 2.43 0.61
 PMOABC 8 52.171 ± 0.050 0.41 ± 0.03 140.62 ± 13.78 7.63 4.38 0.55

Dataset 2 70%
 GRASP 27.943 ± 7.5e−2 0.70 ± 0.03 120.14 ± 7.27 – – –
 NSGA-II 31.710 ± 8.92e−1 0.77 ± 0.05 83.32 ± 10.52 – – –
 ACS 32.777 ± 1.14e−1 0.61 ± 0.06 70.98 ± 5.27 – – –
 MOABC 58.212 ± 7.00e−3 0.38 ± 0.02 139.31 ± 9.93 33.38 – –
 PMOABC 2 58.831 ± 0.052 0.37 ± 0.05 142.42 ± 12.86 27.30 1.22 0.61
 PMOABC 4 59.343 ± 0.036 0.37 ± 0.02 143.93 ± 13.77 13.63 2.45 0.61
 PMOABC 8 60.344 ± 0.042 0.37 ± 0.03 144.64 ± 14.24 8.48 3.94 0.49

Dataset 2 100%
 GRASP – – – – – –
 NSGA-II – – – – – –
 ACS – – – – – –
 MOABC 61.702 ± 4.94e−3 0.35 ± 0.03 147.51 ± 9.90 32.78 – –
 PMOABC 2 61.890 ± 0.033 0.35 ± 0.04 151.73 ± 12.66 26.44 1.24 0.62
 PMOABC 4 61.983 ± 0.062 0.35 ± 0.03 152.31 ± 15.08 13.13 2.50 0.62
 PMOABC 8 62.021 ± 0.069 0.34 ± 0.05 154.03 ± 16.22 6.83 4.79 0.60
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a combination of all metaheuristic algorithms together, and 
their implementation in the proposed method can improve 
the quality of solutions.
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