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Abstract: Shortest path problem is one of the most fundamental components in 
the fields of transportation and communication networks. This paper 
concentrates on a shortest path problem on a network where arc weights are 
represented by different kinds of fuzzy numbers. Recently, a genetic algorithm 
has been proposed for finding the shortest path in a network with mixed fuzzy 
arc weights due to the complexity of the addition of various fuzzy numbers for 
larger problems. In this paper, a particle swarm optimisation (PSO) algorithm 
in fuzzy environment is used for the same due to its superior convergence 
speed. The main contribution of this paper is the reduction of the time 
complexity of the existing genetic algorithm. Additionally, to compare the 
obtained results of the proposed PSO algorithm with those of the existing 
algorithm, two shortest path problems having mixed fuzzy arc weights are 
solved. The comparative examples illustrate that the algorithm proposed in this 
paper is more efficient than the existing algorithm in terms of time complexity. 

Keywords: shortest path problem; fuzzy numbers; particle swarm optimisation 
algorithm. 
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1 Introduction 

Shortest path (SP) problem is an important network structured linear programming 
problem that arises in several contexts and has deservedly received a great deal of 
attention in the literature (Aboutahoun, 2010; Rudniy et al., 2010; Chitra et al., 2011; 
Nikulin and Iftikhar, 2012; Dong et al., 2013; Olya 2014a, 2014b; Trevizan and Veloso, 
2014; Lissovoi and Witt, 2015; Lai, 2015; Ardakani and Tavana, 2015; Grigoryan and 
Harutyunyan, 2015; Rezvanian and Meybodi, 2015; Aridhi et al., 2015). The central 
concept in the problem is to find a path with minimum weight (cost, time or length) 
between two specified nodes. This problem can be used for a wide variety of situations 
such as transportation, routing, communications, supply chain management and models 
involving agents. In addition SP problems arise frequently as sub-problems when solving 
many combinatorial and network optimisation problems. Even though SP problems are 
relatively easy to solve, the design and analysis of most algorithms for solving them 
require considerable ingenuity (Ahuja, 1993). 

In general, SP problems are solved with the assumptions that the weights of arcs are 
specified in a precise way, i.e., in crisp environment. However, in many cases the 
decision maker has no crisp information about the coefficients belonging to the SP 
problem. In these cases, using fuzzy numbers for formulation of the problem is quite 
appropriate and fuzzy SP problem appears in a natural way. 

The overall contribution of this study is summarised as follows: 

1 The particle swarm optimisation (PSO) algorithm proposed in this study gives both 
fuzzy SP and the corresponding SP fuzzy weight in the fuzzy network under 
consideration. 

2 The proposed algorithm, similar to the competing algorithms in the literature, while 
being practically simple, has the flexibility to consider a mixture of various types of 
fuzzy arc lengths in a general network. 
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3 The time complexity of the proposed algorithm is reduced very much compared to 
some existing algorithms commonly used in the literature. 

This paper is structured as follows. In Section 2, basic concepts and definitions of fuzzy 
set theory, computing α-cut for fuzzy numbers and the distance between fuzzy numbers 
are reviewed. A PSO algorithm for the fuzzy SP in a network having mixed fuzzy arc 
weights is presented in Section 3. Two comparative examples are illustrated in Section 4. 
Finally, conclusions and discussions are given in Section 5. 

2 Literature review 

Since the SP problem can be formulated as a linear programming where the constraints 
have a special structure, one straightforward method for solving fuzzy SP problems is 
utilising the fuzzy linear programming solution techniques(Ebrahimnejad 2011a, 2011b, 
2013a, 2013b, 2014; Ebrahimnejad et al., 2013; Khalili-Damghani et al., 2013; 
Sahebjamnia et al., 2013; Kazemi et al., 2014; Messaoudi and Rebaï, 2014; Ebrahimnejad 
and Tavana, 2014; Ebrahimnejad and Verdegay, 2014a, 2014b). However, because of its 
very special structure, a host of specialised algorithms have been proposed for the fuzzy 
SP problems in the literature. 

An overview of the articles which studied fuzzy SP problem and discussed related 
methodologies can be summarised as follows. Dubois and Prade (1980) first analysed the 
fuzzy SP (FFP) problem and considered extensions of the classic Floyd and  
Ford-Moore-Bellman (FMB) algorithms that return distances without an associated path. 
Klein (1991) introduced new models based on fuzzy SPs and also proposed a general 
algorithm based on dynamic programming to solve the new models. In addition the SFP 
algorithms were analysed in terms of sub-modular functions in that paper. Lin and Chern 
(1993) considered the case that the arc weights are fuzzy numbers and proposed an 
algorithm for finding the single most vital arc in a network as being that whose removal 
from the path results in an increase in cost. The neural networks were introduced for 
solving SP problems by Li et al. (1996). Okada and Soper (2000) concentrated on a SP 
problem in a network with fuzzy arc weights. Then they proposed an algorithm to obtain 
all Pareto Optimal paths from the specified node to every other node by introducing a 
concept of Pareto Optimal path based on an order relation between fuzzy numbers. 
Following the idea of finding a fuzzy set solution, Okada (2004) presented an algorithm 
to determine the degree of possibility for each arc on the SP. Chuang and Kung (2005) 
proposed a heuristic procedure to find the FSP length among all possible paths in a 
network. Chuang and Kung (2006) proposed a new algorithm that gives the FSP length 
and the corresponding SP in a discrete FSP problem. Hernandes et al. (2007) considered a 
generic algorithm for solving FSP problem that can be implemented using any fuzzy 
numbers ranking index chosen by the decision-maker. Ji et al. (2007) introduced three 
types of models for FSP problem based on the concepts of expected SP, α-SP and the 
most SP in fuzzy environment. They also proposed a hybrid intelligent algorithm 
integrating simulation and genetic algorithm in order to solve these models. Gao (2011) 
proved that there exists an equivalence relation between the α-SP of an uncertain network 
and the SP of the corresponding deterministic network. Mahdavi et al. (2009) focused on 
finding shortest chains in a graph with fuzzy distance for every arc and proposed a 
dynamic programming approach to solve the fuzzy shortest chain problem using a 



   

 

   

   
 

   

   

 

   

   206 A. Ebrahimnejad et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

suitable ranking method. Kumar and Kaur (2011) presented a new algorithm for solving 
SP problem on a network with imprecise arc weights. Dou et al. (2012) applied an 
approach to select the SP in multi-constrained network using multi-criteria decision 
method based on vague similarity measure. Deng et al. (2012) extended the Dijkstra 
algorithm to solve the SP problem with fuzzy arc weights. Their proposed method to find 
the SP under fuzzy arc lengths is based on the graded mean integration representation of 
fuzzy numbers. Zhang et al. (2013) proposed a biologically inspired algorithm called 
Fuzzy Physarum Algorithm for fuzzy SP problems based on path finding model. 
Rangasamy et al. (2013) proposed a method for finding the shortest hyper path in an 
intuitionistic fuzzy weighted hypergraph using the scores and accuracy of intuitionistic 
fuzzy numbers. Tajdin et al. (2010) designed an algorithm for computing a SP in a 
network having various types of fuzzy arc lengths. They used an α-cut approach to 
compute the addition of various fuzzy numbers as arc weights. After that, Hassanzadeh  
et al. (2013) presented a genetic algorithm for finding the SP in the network due to the 
complexity of the addition of various fuzzy numbers for larger problems. In this paper, 
we use a population-based metaheuristic optimisation algorithm, namely PSO, to 
approximate a short path on the same network, where arcs are weighted with different 
kinds of fuzzy numbers. 

3 Preliminaries 

In this section, some basic definitions and arithmetic operations on fuzzy numbers are 
presented (Dubois and Prade, 1980; Tajdin et al., 2010; Hassanzadeh et al., 2013). 

3.1 Fuzzy numbers 

Definition 1: Let X be the universal set. The set a�  is called a fuzzy set in X if a�  is a set 
of ordered pairs {( , ( )) | },aa x μ x x X= ∈��  where (.)aμ �  is a membership function of a�  and 
assigns to each element x∈X a real number ( )aμ x�  in the interval [0,1]. 

Definition 2: Given a fuzzy set a�  defined on X and any number α∈[0,1], the α-cut is the 
crisp set [ ] { ; ( ) } [ , ].L R

aa x X μ x a a= ∈ ≥ =�� � �α α αα  

Definition 3: A fuzzy number is a convex normalised fuzzy set of the real line \, whose 
membership function is piecewise continuous. 

Definition 4: A function L: [0, ∞) → [0,1] (or R: [0, ∞) → [0,1]) is said to be reference 
function of fuzzy numbers if and only if 

1 L(0) = 1 (R(0) = 1) 

2 L(or R) is non-increasing on [0, ∞). 

Example 1: The commonly used linear reference functions and nonlinear reference 
functions with parameter q, denoted as RFq, are summarised as follows: 

1 linear: max{0, 1 – x} 

2 power: RFq = max{0, 1 – xq}, q > 0 
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3 exponential power: , 0qx
qRF e q−= >  

4 rational: 1 , 0
1q q

RF q
x

= >
+

 

Definition 5: A fuzzy number ,a�  denoted by ( , , ) ,LRa m a b=�  is called an LR fuzzy 
number if the membership function ( )aμ x�  is given by 

, ,
( )

, .
a

m xL x m
aμ x

x mR x m
b

⎧ −⎛ ⎞ ≤⎜ ⎟⎪⎪ ⎝ ⎠= ⎨
−⎛ ⎞⎪ ≥⎜ ⎟⎪ ⎝ ⎠⎩

�  

The set of LR fuzzy numbers on real line is denoted by ℓℜ(\). 
It should be noted that if L(x) = R(x) = max{0, 1 – x} then the LR fuzzy number 
( , , )LRa m a b=�  is denoted by ( , , )a m a b=�  and is called a triangular fuzzy number with 

the following membership function (see Figure 1): 

( ) , ,
( )

( ) , .
a

x m a x m
aμ x

m b x x m
b

− −⎧ ≤⎪⎪= ⎨ + −⎪ ≥
⎪⎩

�  

Figure 1 Triangular fuzzy number ( , , )a m a b=�  (see online version for colours) 

x

( )a xμ�

bm a 

1 

 

Definition 6: If 2( ) ( ) xL x R x e−= =  then the LR fuzzy number ( , , )LRa m a b=�  is called a 
normal fuzzy number fuzzy number and shown by ( , )a m σ=�  with the following 
membership function (see Figure 2): 

2

( ) ,
x m
σaμ x e x
−⎛ ⎞−⎜ ⎟

⎝ ⎠= ∈� \  

where m and σ are mean and standard deviation, respectively. 
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Figure 2 Normal fuzzy number ( , )a m σ=�  (see online version for colours) 

 

Definition 7: A trapezoidal fuzzy number a�  is denoted by 1 2 3 4( , , , ),a a a a a=�  with the 
following membership function (see Figure 3): 

1
1 2

2 1

2 3

4
3 4

4 3

, ,

( ) 1, ,

, .

a

x a a x a
a a

μ x a x a
a x a x a

a a

−⎧ ≤ ≤⎪ −⎪⎪= ≤ ≤⎨
⎪ −⎪ ≤ ≤

−⎪⎩

�  

Figure 3 A trapezoidal fuzzy number 1 2 3 4( , , , )a a a a a=�  (see online version for colours) 

1 

1a 2a 3a 4a  

3.2 α-cut of fuzzy numbers 

One approach to develop the arithmetic of fuzzy numbers is based on α-cuts. 

Definition 8: Let ( , , )LRa m a b=�  be an LR fuzzy number with L and R reference 
functions. Then, the α-cut of a�  is given by 
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[ ] [ ] [ ]1 1, ( ), ( ) .L Ra a a m aL m bR− −= = − +� � �α αα α α  

Definition 9: Let ( , )a m σ=�  be a normal fuzzy number. The α-cut of a�  is given by 

[ ] [ ], ln( ), ln( ) .L Ra a a m σ m σ⎡ ⎤= = − − + −⎣ ⎦� � �α αα α α  

Definition 10: Let 1 2 3 4( , , , )a a a a a=�  be a trapezoidal fuzzy number. The α-cut of a�  is 
given by 

[ ] [ ] ( ) ( )2 1 1 4 4 3, , .L Ra a a a a a a a a⎡ ⎤= = − + − −⎣ ⎦� � �α αα α α  

3.3 Approximate summation of mixed fuzzy numbers 

Hassanzadeh et al. (2013) proposed an exponential membership function for the 
approximating sum of trapezoidal and normal fuzzy numbers. For doing this, they 
divided the α-interval, [0, 1], into n subinterval by letting α0 = 0 and 

1
1, , 1, 2, , .i i i i i n
n−= + Δ Δ = = …α α α α  

When the normal fuzzy numbers are considered, it is not reasonable to set α equal to 0. In 
this case, we let α∈(0, 1]. 

Let 1 2 3 4( , , , )a a a a a=�  and ( , )b m σ=�  be trapezoidal and normal fuzzy numbers, 
respectively. Given αi ∈(0,1], 1 ≤ i ≤ n, the αi-cut sum of these fuzzy numbers using 
Definitions 6 and 7 is obtained as follows: 

[ ] [ ] [ ]

( ) ( ) ( ) ( )2 1 1 4 4 3

, ,

ln , ln

i i i i i i i i i
L L R R L R

i i i i

c a b a b a b c c

a a a m σ a a a m σ

⎡ ⎤= + = + + ⇒ ⎡ ⎤⎣ ⎦ ⎣ ⎦
⎡ ⎤= − + + − − − − + + −⎣ ⎦

� � �� � � � � �α α α α α α α α α

α α α α
 (1) 

Corresponding to equation (1), using the αi, 1 ≤ i ≤ n, n points for 
i

Lc�α  and n points for 

i
Rc�α  are gained. 

Hassanzadeh et al. (2013) approximated the membership function of the sum using 
the resulting points via α-cut and Crammer’s approach for fitting a membership function 
for the sum. Let 

i
R

ix c= �α  and ( ),
i

R
iy μ c= �α  and for n points (xi, yi), consider the fitting 

model to be as 
2

.
x λ

y e
−⎛ ⎞−⎜ ⎟

⎝ ⎠= β  They proposed a least squares model to approximate the 
right membership function for the considered addition, and determined the unknown 
parameters λ and β as follows (Tajdin et al., 2010; Hassanzadeh et al., 2013): 

( )ln ln

ln ln ln

i i i i
i i i

i i i
i i i

n x y y x

n y y y

× − − − ×

=
− − − − × −

∑ ∑ ∑
∑ ∑ ∑

β  (2) 
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( )ln ln ln

ln ln ln

i i i i i
i i i i

i i i
i i i

y x x y y
λ

n y y y

⎛ ⎞− − × − × −⎜ ⎟
⎝ ⎠=

− − − − × −

∑ ∑ ∑ ∑
∑ ∑ ∑

 (3) 

In a similar way, let 
i

L
ix c= �α  and ( ),

i
L

iy μ c= �α  and consider the fitting model 
2'

' .
x λ

y e
−⎛ ⎞−⎜ ⎟

⎝ ⎠= β  The least squares model to approximate the left membership function for 
the considered addition gives the unknown parameters 'λ  and 'β  as follows (Tajdin  
et al., 2010; Hassanzadeh et al., 2013): 

( )ln ln
'

ln ln ln

i i i i
i i i

i i i
i i i

n x y y x

n y y y

× − − − ×

=
+ − × −

∑ ∑ ∑
∑ ∑ ∑

β  (4) 

( )ln ln ln
'

ln ln ln

i i i i i
i i i i

i i i
i i i

y x x y y
λ

n y y y

× + × − × −

=
+ − × −

∑ ∑ ∑ ∑
∑ ∑ ∑

 (5) 

Therefore, the approximate membership function for the approximating sum of 
trapezoidal and normal fuzzy numbers is computed by: 

2

2

'
' , ',

( ) 1, ' ,

, .

λ x

c

x λ

e x λ
μ x λ x λ

e x λ

−⎛ ⎞−⎜ ⎟
⎝ ⎠

−⎛ ⎞−⎜ ⎟
⎝ ⎠

⎧
⎪ <
⎪

= ≤ ≤⎨
⎪
⎪

>⎩

�

β

β

 (6) 

3.4 Distance between mixed fuzzy numbers 

In this subsection, the distance between two fuzzy numbers using the resulting points 
from the α-cut is reviewed (Tajdin et al., 2010; Hassanzadeh et al., 2013). 

Given two fuzzy numbers a�  and ,b�  the Dp,q-distance between them is defined as 
follows: 

( )
1 1

0 0
,

0 10 1

(1 ) ,
,

(1 ) sup inf ,

p p

p q

α

q a b d q a b d p
D a b

q a b q a b p

− − + +

− − + +
< ≤< ≤

⎧⎡ ⎤− − + − < ∞⎪⎢ ⎥⎣ ⎦= ⎨
⎪ − − + − = ∞
⎩

∫ ∫��
α α α α

α α α α
α

α α
 (7) 

where the first parameter p denotes the priority weight attributed to the end points of the 
support; for instance, the a−

α  and a+
α  of the fuzzy numbers. If the expert has no 

preference, 1,
2

p
D  is used. The second parameter q determines the analytical properties of 

Dp,q. For two fuzzy numbers a�  and ,b�  the Dp,q is proportional to 
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( )
1

,
1 1

, (1 ) i i i i

n n pp p
p q

i i

D a b q a b q a b− − + +

= =

⎡ ⎤
= − − + −⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑�� α α α α  (8) 

If 1
2

q =  and p = 2, then the above equation turns into: 

( ) 2 2
12,
2 1 1

1 1,
2 2i i i i

n n

i i

D a b a b a b− − + +

= =

⎡ ⎤
= − + −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑�� α α α α   (9) 

To compare two fuzzy arc weights a�  and b�  using the αi-cuts for their approximations, 
since they are supposed to represent positive values, they are compared with 
0 (0,0, ,0).=� …  In fact, formula (9) is used to compute 12,

2
( ,0)D a ��  and 12,

2
( ,0).D b� �  In this 

case, we say that a b≤ ���  if and if 1 12, 2,
2 2

( ,0) ( ,0).D a D b≤ �� ��  

4 PSO algorithm for solving fuzzy SP 

In this section, a PSO algorithm is presented for finding the SP and the corresponding SP 
weight in the fuzzy network under consideration. PSO algorithm is a simple algorithm 
with only a few parameters to be adjusted during the optimisation process, rendering it 
compatible with any modern computer language. Also, it is more efficient than other 
evolutionary algorithms due to its superior convergence speed (Yang and Zhang, 2010). 

4.1 Particle swarm optimisation 

PSO algorithm has been presented for the first time in 1995 by Kennedy and Eberhart 
(1995) as an evolutionary computation technique. In recent years this heuristic algorithm 
have been proposed to solve the real life problems related to many engineering 
applications, which have achieved better results in terms of computational and time 
complexity (Gao et al., 2013; Zhang et al., 2014; Tang et al., 2014; Mahi et al., 2015; 
Ardizzon et al., 2015; Zhang et al., 2015; Sadeghzadeh et al., 2015; Moraes et al., 2015). 

The PSO algorithm is inspired from the swarm movement of the birds searching for 
food. It is a population-based algorithm in which its individuals (known as particles) 
encode potential solutions to n-dimensional optimisation problems and explore the search 
space through cooperation with other particles. The cooperation takes place by 
communicating the best solutions found so far and moving towards them. 

Particles have a position vector x(t) that encodes a potential solution to the problem, 
and a velocity vector v(t) that determines the change in the position according to 

( 1) ( 1) ( )x t v t x t+ = + +  (10) 

The velocity vector balances the trade-off between exploration and exploitation of the 
search: high velocities result in large changes in the position of the particles 
(exploration), whereas low velocities produce small changes (exploitation). The velocity 
vector for each iteration is computed as follows (Calazan et al., 2014): 
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1 1 2 2( 1) ( ) [ ( ) ] [ ( ) ]v t wv t c r x t pbest c r x t gbest+ = + − + −  (11) 

where w is the inertia of the particle (Shi and Eberhart 1998), c1 and c2 are positive 
acceleration coefficients (cognitive and social components) that weigh the importance of 
the personal and neighbourhood knowledge, r1 and r2 are random values in [0,1], pbest is 
the best position (the position giving the best fitness value) found so far by the particle 
itself, and gbest is the best one found by its neighbourhood. 

It should be noted that w or inertia factor, is a parameter that controls impact of 
current velocity on the new velocity and plays the role of balancing the global search and 
local search. This factor can be computed according to following formula: 

max min
max

max

w ww w iter
iter
−

= − ×  (12) 

where wmax, wmin, itermax and iter are initial weight, final weight, maximum iteration 
number and current iteration number, respectively. 

4.2 Finding the SP by PSO 

It should be noted that the main elements of PSO algorithm are constituted of two main 
components: 

• population initialisation 

• updating the velocity and position equations. 

In what follows, we describe how to apply these elements for obtaining fuzzy SP. 

4.2.1 Population initialisation 

For finding the SP through PSO algorithm, at first the initial swarm should be 
established. The initial swarm is consisted of some particles that each particle is indeed a 
path from the origin of network to the destination of network. After establishing of the 
initial swarm that specifies the position of particles, the initial velocity of each particle 
should be established too. The velocity of each particle is also a path. For establishing the 
path in a network, the vicinity matrix to that network is required. Corresponding to each 
network, first the vicinity matrix is established and then by Algorithm 1 the velocity and 
the position of each article are established. 
Algorithm 1 Producing of primary population 

1 Determine the vicinity matrix of directed network G = (V, E), give particle – size and set  
q = 1. 

2 Set i = 1, m = 1 and p(m) = 1. 
3 Define a1(i) = {j | (i, j) ∈ A, aij = 1} and select a member of it, say j. Let m = m + 1 and  

p(m) = j. 
4 If j ≠ n then let i = j and go to (3). 
5 Save the produced path using the labels in the labelling vector p. Let q = q + 1. 
6 If q ≤ particle – size then go to (2) else stop. 
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4.2.2 Updating the velocity and position equations 

It should be noted that PSO is a kind of evolutionary algorithm to find optimal solutions 
for continuous optimisation problems. But, SP problem with different fuzzy arc weights 
is a discrete optimisation problem. Thus, standard PSO equations are not able to generate 
discrete values since positions are real-valued and it is required to use heuristic method to 
overcome this shortcoming in solving fuzzy SP problem. For overcoming the problem of 
updating the velocity and position equations, crossover operator is added to the proposed 
discrete PSO algorithm for solving fuzzy SP problem. The applied crossover operator 
acts exactly like that one used in genetic algorithm (Hassanzadeh et al., 2013) and 
combines the information corresponding to two parents (articles) to generate two 
children. In what follows, the generation process of children is explored. 

In the standard PSO algorithm, velocity equation is based on equation (10) in which 
three factors c1r1, c2r2 and w represent the impact amount of pbest, gbest and v(t), 
respectively. In our proposed heuristic method, these factors are used to choose parents in 
crossover operator. In each updating step of the velocity equation, among the three 
parameters of c1r1, c2r2 and w, two factors having the most values, are selected as parents 
and the corresponding vectors execute the crossover operator. In this case, the result of 
crossover is a new path that is saved as v(t + 1). In addition, in each updating step of the 
position equation, another crossover operator is executed between the current position of 
particle x(t) and new velocity (child generated from the previous crossover) of particle  
v(t + 1). For example, if c1r1 = 0.9, c2r2 = 0.15 and w = 0.62, since c1r1 = 0.9 and w = 0.62 
have the higher values among these three values, then the pbest and w vectors execute 
crossover operator and their child is selected as v(t + 1). Also, for updating the position 
equation, the vectors v(t + 1) and x(t) execute the crossover operator in order to obtain 
new position (path) x(t + 1). 

4.4.2.1 Crossover operator 

The crossover operator in the genetic and PSO algorithms has the same process. This 
means that the standard used crossovers in genetic algorithm such as one-point, two-
point, and uniform can be used in PSO models. Two paths, called parents, are randomly 
selected from the population. 

The number of paths for the crossover operator is equal to the product of population 
size and crossover operator’s rate. Then, one or two common members are selected and 
different sections of the codes for parents are modified. Hence, two new children (new 
path) are generated. It is obvious that the generated paths are feasible. If at least one 
member is common, then one-point crossover is performed and if at least two members 
are common, then two-point crossover is performed. In addition, if there is no common 
member among parents, a new path is obtained by Algorithm 1 and is considered as the 
result of crossover. 

4.2.2.2 Fitness calculating 

This value is determined by aggregating the arcs included in the path, where to sum the 
various arcs, equation (3) is applied. The result of the addition is a set of α-cut points. 
Then, for comparison of path values, the distance function 12,

2
D  is used as explained 
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before. The values of 12,
2

D  is the path length and the minimum possible value in the 

network is the SP length (Hassanzadeh et al., 2013). 

5 Comparative examples 

In this section, to show the advantages of the proposed PSO algorithm over the existing 
genetic algorithm (Hassanzadeh et al., 2013), the numerical examples given in 
Hassanzadeh et al. (2013) are solved by using the proposed algorithm and the time 
complexity results of existing and the proposed algorithms are compared. 

Example 5.1: Let us consider the network in Fig 4 with mixed fuzzy arc weights as given 
in Table 1. There are 11 nodes and 25 arcs in the network. Number of particles in the 
PSO algorithm and number of chromosomes in the genetic algorithm (Hassanzadeh et al., 
2013) are 10. Number of iterations in both of these algorithms is same. 

Figure 4 The network for Example 1 

 

Table 1 The arc weights for Example 1 

Arc Fuzzy number Arc Fuzzy number Arc Fuzzy number 

(1, 2) (800, 820, 840) (3, 5) (730, 748, 870) (8, 4) (710, 730, 835) 

(1, 3) (35, 11) (3, 8) (42, 14) (8, 7) (230, 242, 355) 

(1, 6) (650, 677, 783) (4, 5) (190, 199, 310) (9, 7) (120, 130, 250) 

(1, 9) (290, 300, 350) (4, 6) (310, 340, 460) (9, 8) (13, 4) 

(1, 10) (420, 450, 570) (4, 11) (71, 23) (9, 10) (23, 7) 

(2, 3) (180, 186, 293) (5, 6) (610, 660, 790) (10, 7) (330, 342, 450) 

(2, 5) (495, 510, 625) (6, 11) (23, 7) (10, 11) (125, 41) 

(2, 9) (90, 30) (6, 7) (390, 410, 540) (3, 4) (650, 667, 983) 

(7, 11) (45, 15)     
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The corresponding fuzzy SP problem has been solved 10 times using the proposed PSO 
algorithm and the existing genetic algorithm (Hassanzadeh et al., 2013). The results are 
given in Table 2. 
Table 2 Information corresponding to ten runs of Example 1 

 
Generation Shortest 

path 

Number of iteration 
to converge  Convergence 

time span (s)  Total time (s) 

GA PSO  GA PSO  GA PSO 

1 80 1-3-8-7-11 6 1  0.61 0.08  6.84 3.70 
2 80 1-3-8-7-11 7 1  0.58 0.11  6.92 4.00 
3 80 1-3-8-7-11 2 3  0.20 0.18  6.94 3.57 
4 80 1-3-8-7-11 2 5  0.31 0.25  7.23 3.68 
5 80 1-3-8-7-11 14 6  1.43 0.29  7.02 3.77 
6 120 1-3-8-7-11 6 2  0.54 0.30  10.61 5.98 
7 120 1-3-8-7-11 12 1  0.91 0.19  10.26 5.50 
8 120 1-3-8-7-11 1 9  0.13 0.53  10.65 5.65 
9 120 1-3-8-7-11 7 7  0.51 0.41  10.16 5.53 
10 120 1-3-8-7-11 11 4  0.88 0.38  10.55 5.88 
Min - - 1 1  0.13 0.11  6.84 3.57 
Max - - 14 6  1.43 0.53  10.65 5.98 
Mean - - 6.8 3.1  0.61 0.272  8.718 4.726 

The fuzzy SP found by the proposed PSO algorithms is 1 →3→8→7→ 11matching the 
results of (Hassanzadeh et al., 2013).However, using PSO algorithm proposed in this 
study is preferred to genetic algorithm proposed by Hassanzadeh et al. (2013) due to 
following reasons: 

1 Figure 6 shows the convergence curve for Example 1. The curve shows convergence 
to the SP after 14 iterations of the existing genetic algorithm (Hassanzadeh et al., 
2013) and after 6 iterations of the proposed PSO algorithm. 

2 As can be seen from Table 2, the average number of iterations to converge for 
genetic algorithm is 6.8, while the average number of iterations to converge for 
genetic algorithm is 3.1. 

3 As documented in Table 2, the minimum, maximum and average convergence time 
spans for genetic algorithm are 0.13, 1.43 and 0.61, respectively and these values for 
PSO algorithm are 0.11, 0.53 and 0.272. Due to this fact, utilising PSO algorithm is 
preferred to genetic algorithm for solving fuzzy SP from the time complexity point 
of view. 

4 In addition, Table 2 gives the minimum, maximum and average total times to 
convergence using these algorithms. The minimum convergence total time among 10 
times using the existing genetic algorithm and the proposed PSO algorithm are 
respectively 6.84 and 3.57. Also, the average convergence total time among 10 times 
using the existing genetic algorithm and the proposed PSO algorithm are respectively 
8.718 and 4.726. Due to these facts, utilising PSO algorithm gives us a time 
advantage compared to genetic algorithm, regarding the convergence total time. 
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Example 5.2: Let us consider the network in Figure 5 with mixed fuzzy arc weights as 
given in Table 3. There are 23 nodes and 40 arcs in the network. Number of particles in 
the PSO algorithm and number of chromosomes in the genetic algorithm (Hassanzadeh et 
al., 2013) are 22. Number of iterations in both of these algorithms is 50. 

Figure 5 The network for Example 2 

 

Table 3 The arc weights for Example 2 

Arc Fuzzy number Arc Fuzzy number Arc Fuzzy number 

(1, 2) (12, 13, 15, 17) (1, 3) (40, 11) (1, 4) (8, 10, 12, 13) 

(1, 5) (7, 8, 9, 10) (2, 6) (35, 10) (2, 7) (6, 11, 11, 13) 

(3, 8) (40, 11) (4, 7) (17, 20, 22, 24) (4, 11) (6, 10, 13, 14) 

(5, 8) (29, 9) (5, 11) (7, 10, 13, 14) (5, 12) (10, 13, 15, 17) 

(6, 9) (6, 8, 10, 11) (6, 10) (35, 11) (7, 10) (9, 10, 12, 13) 

(7, 11) (6, 7, 8, 9) (8, 12) (5, 8, 9, 10) (8, 13) (50, 5) 

(9, 16) (6, 7, 9, 10) (10, 16) (40, 13) (10, 17) (15, 19, 20, 21) 

(11, 14) (8, 9, 11, 13) (11, 17) (28, 9) (12, 14) (13, 14, 16, 18) 

(12, 15) (12, 14, 15, 16) (13, 15) (37, 12) (13, 19) (17, 18, 19, 20) 

(14, 21) (12, 12, 13, 14) (15, 18) (8, 9, 11, 13) (15, 19) (25,7) 

(16, 20) (38, 12) (17, 20) (7, 10, 11, 12) (17, 21) (6, 7, 8, 10) 

(18, 21) (15, 17, 18, 19) (18, 22) (16, 5) (18, 23) (15, 5) 

(19, 22) (5, 16, 17, 19) (20, 23) (13, 14, 16, 17) (21, 23) (12, 15, 17, 18) 

(22, 23) (20, 5)     

The corresponding fuzzy SP problem has been solved 10 times using the proposed PSO 
algorithm and the existing genetic algorithm (Hassanzadeh et al., 2013). The results are 
given in Table 4. 
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Table 4 Information corresponding to ten runs of Example 2 

 Generation Shortest 
path 

Number of iteration 
to converge  Convergence 

time span (s)  Total time (s) 

GA PSO  GA PSO  GA PSO 
1 80 1-3-8-7-11 5 3  1.94 0.80  23.72 18.89 
2 80 1-3-8-7-11 2 2  1.09 0.66  23.73 18.49 
3 80 1-3-8-7-11 4 1  1.45 0.51  23.80 18.76 
4 80 1-3-8-7-11 3 1  1.28 0.51  23.69 18.27 
5 80 1-3-8-7-11 11 8  3.02 2.13  23.91 18.78 
6 120 1-3-8-7-11 15 1  4.62 0.53  35.34 27.01 
7 120 1-3-8-7-11 2 2  0.75 0.63  35.54 27.53 
8 120 1-3-8-7-11 3 1  1.46 0.50  35.30 26.55 
9 120 1-3-8-7-11 5 7  1.64 1.21  35.35 27.22 
10 120 1-3-8-7-11 13 1  4.11 0.51  35.44 27.68 
Min - - 2 1  1.09 0.50  23.69 18.27 
Max - - 15 8  4.62 2.13  35.54 27.68 
Mean - - 6.3 2.7  2.136 0.799  29.582 18.318 

Figure 6 Convergence curve of PSO and genetic algorithm for Example 1 (see online version  
for colours) 
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Figure 7 Convergence curve of PSO and Genetic Algorithm for Example 2 (see online version 
for colours) 

 

After implementing our proposed approach, the fuzzy SP from node 1 to node 11 can be 
obtained: 1 → 5 → 12 → 15 → 18→23. The result is also consistent with the result in 
Hassanzadeh et al. (2013). However, using PSO algorithm proposed in this study for 
solving fuzzy SP is strongly economical compared to genetic algorithm proposed by 
Hassanzadeh et al. (2013) from the complexity time point of view due to following 
reasons: 

1 Figure 7 shows the convergence curve for Example 2. The curve shows convergence 
to the SP after 15 iterations of the existing genetic algorithm (Hassanzadeh et al., 
2013) and after 7 iterations of the proposed PSO algorithm. 

2 As can be seen from Table 4, the minimum, maximum and average numbers of 
iterations to converge for genetic algorithm are 2, 15 and6.3 iterations, while the 
corresponding values for genetic algorithm are 1, 8 and 2.7 iterations. 

3 As documented in Table 2, the average convergence time span for genetic algorithm 
is 2.136, while the corresponding time for PSO algorithm is 0.799. 

4 In addition, From Table 2 the minimum convergence total time among 10 times 
using the existing genetic algorithm and the proposed PSO algorithm are respectively 
23.69 and 18.27. Also, the average convergence total time among 10 times using the 
existing genetic algorithm and the proposed PSO algorithm are respectively 29.582 
and 22.928. These facts confirm that utilising PSO algorithm gives us a time 
advantage compared to genetic algorithm, regarding the convergence total time. 
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6 Conclusions 

In this paper, a solution procedure has been defined for a SP problem in which the 
network arcs are represented by mixed fuzzy numbers. We proposed a PSO algorithm for 
finding an optimal (shortest) path and its corresponding membership function instead of 
genetic algorithm. The comparative results illustrated that the algorithm proposed in this 
paper is more efficient than the existing genetic algorithm in terms of computing time 
even if the best result for each example is used. It should be noted that using the proposed 
algorithm in this study repeatedly for n (total number of nodes) times taking different 
source nodes, it is possible to find the SP between any pair of vertices. In future studies, 
we plan to develop the proposed approach to find the fuzzy shortest chain simultaneously 
between any two nodes considered. In addition, we plan to focus on developing the 
proposed algorithm to solve fuzzy SP problem on multi-weight networks. Finally, we 
plan to conduct further research by comparing the results obtained with those that might 
be obtained with other heuristic algorithms such as artificial bee colony (ABC) algorithm 
and artificial ant colony (ACO) algorithm. We hope that the concepts introduced here 
will provide inspiration for future research. 
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