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Abstract
In agilemethods, software products are developed in several releases. In each release, a newset of requirements for development
is proposed. Due to technical and non-technical problems, it is almost impossible to develop all the proposed requirements in
the next release. The select of an optimal subset from among all the proposed requirements has become an important problem
for the developer team. The aim of this problem is to select an optimal subset from among the requirements for product
development in the next release so that it has the highest satisfaction to the clients and the lowest cost for the manufacturing
company. Since this problem faces two conflicting objectives and several constraints, it is placed in the NP-hard problems
category. In this paper, we intend to formulate this problem for the first time as a fuzzy multi-objective optimization problem.
We intend to use an artificial chemical reaction optimization algorithm to solve this problem. In the implementation stage, we
make use of five interactions between requirements as one of the constraints of the problem for the first time. Two randomized
fuzzy synthetic datasets are used to do the experiments. The results of the proposed algorithm are evaluated using three criteria
of multi-objective problems. The results and diagrams of the proposed algorithm are very reliable and can help the developer
team to make a decision.

Keywords Next release problem · Fuzzy numbers · Software requirements · Software engineering · Artificial chemical
reaction optimization algorithm

1 Introduction

In today’s world, software plays an important role in the
industry and the economy. Software can play the role of
controlling, monitoring, forecasting and analyzing activities.
Software production is a complex process. A defect in any
of the software development steps can lead to a failure of
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the project (Dhanajayan and Pillai 2017). The stage of deter-
mining software requirements is a very critical stage. Defect
in determining the correct software requirements may not
be discovered until the final stages of software production
(Chatterjee and Maji 2016). The later the hidden defects are
discovered in this process, the greater the cost is imposed on
the project. In the incremental software developmentmethod,
the product develops in several releases. Software developers
face a set of requirements in every release that they need to
develop. It is almost impossible for all the proposed require-
ments to be developed in every release. Problems such as
lack of funding, lack of time, and intrinsic contradiction
between the requirements prevent the development of all
the proposed requirements (Thakurta 2017). For developer
teams, it is important to select an optimal subset of the pro-
posed requirements which can have maximum satisfactions
to clients and minimum cost and time for product develop-
ment. In large projects with a great number of requirements,
it is very difficult to select the optimal subset. For this reason,
it is necessary to have a method for determining the optimal
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subset of requirements in order to help the software engineers
with easier decision making.

The problem of selecting an optimal subset of require-
ments that is known as the next release problem (NRP) was
first introduced by Bagnall et al. (2001). In this problem, the
goal is to select an optimal subset of requirements that can
provide the highest satisfactions to clients at the lowest cost
and satisfy the constraints of the problem. Restrictions on
this problem may include interactions between requirements
or the presence of a cost ceiling for the project.

The NRP problem is considered an NP-hard problem
because of the two conflicting objectives of reducing the
costs and increasing the satisfactions. Due to the complexity
of this problem, the single-objective optimization methods
cannot find an optimal subset of the requirements (Wessing
and Preuss 2016). For this reason, the use of meta-heuristic
multi-objective algorithms has been considered for solving
this problem (Deb 2001). Themeta-heuristic algorithms, due
to their high capabilities, could obtain the solutions to the
optimization problems at the suitable time due to their high
capabilities (Cai et al. 2017; Shen et al. 2017;Guo et al. 2017;
Wang et al. 2017).

The developer team should assign a value as the devel-
opment cost and another value as the rate of satisfactions
to each of the proposed requirements for development in
every release. In previous papers, allocation of these values
was done in crisp form. Considering the presence of clients
with different views and desires, the allocation of a crisp
value as the satisfaction for each requirement is not logi-
cal. Also, due to technical problems occurring at the time
of implementing a requirement, the allocation of a crisp
value as the cost of developing a requirement is also not rea-
sonable. In this situation, the allocation of values of fuzzy
type for the satisfaction and cost of each requirement is
more rational and more practical. In this paper, we intend
to solve this two-objective problem by assigning fuzzy val-
ues. To solve this problem, we use an artificial chemical
reaction optimization algorithm (Lam and Li 2010). The arti-
ficial chemical reaction optimization algorithm presented in
recent years is a powerful meta-heuristic algorithm for solv-
ing complex optimization problems. This algorithm searches
the problem space well with the help of its various oper-
ators. In addition, it has been successful in solving many
optimization problems (Nayak et al. 2015; Rao and Banka
2017).

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the related literature in this scope. Section 3
discusses the multi-objective NRP problem and formu-
lates a multi-objective approach to this problem. Section 4
introduces the proposed method. Section 5 analyzes the
experiments and the results. Finally, Sect. 6 concludes the
paper and recommends future works in this domain.

2 Literature review

The search-based software engineering (SBSE) is one of
the research areas in which search-based optimization algo-
rithms are used to solve software engineering domain prob-
lems. The NRP problem belongs also to this area (Sadiq
and Jain 2014). The classification, analysis, and evalua-
tion of previous work have been done on problems related
to the selection and prioritization of software requirements
(Pitangueira et al. 2015). One of the first attempts for solving
the NRP problem has been done in the work (Karlsson 1996)
where the author used analytic hierarchy process (AHP)
and quality function deployment (QFD) methods to select
and prioritize software requirements. In the AHP method,
requirementswere classified and in theQFDmethod, require-
ments were prioritized. In projects with a high number of
requirements, these two methods are not suitable for their
long runtime.

In the work (Lai et al. 2008) a new method of ranking
the clients requirements was introduced with respect to the
competitive market. In this method, fuzzy QFD was used.
In addition to clients’ feedback, the authors also considered
rival software companies products to rank their requirements.
In the research (Sadiq and Jain 2014) a fuzzy method was
used for the prioritization of the requirements in the pro-
cess of eliciting goal-based requirements. This method is
based on the combination of weighted relations and the
fuzzy analytical hierarchy process (FAHP). The research
(Alrashoud and Abhari 2017) considered three criteria when
planning for the development of the next release, namely
stakeholders’ satisfaction, risk, and resource availability. The
proposed method of this article used the fuzzy inference
system to overcome the uncertainty of the problem and
to solve it. The work (De Souza et al. 2011) proposed an
optimal release policy for multi-release software system by
taking into consideration the testing aswell as the operational
phase.

The work (Bagnall et al. 2001) introduced three differ-
ent methods to solve the NRP problem. The first method
was to use linear programming to obtain the exact solution
to the problem. In the second method, three greedy algo-
rithms were used. In the third method, two local search
algorithms were employed. In NRP problems, with a low
number of requirements, linear programming finds the exact
solution to the problem at the right time. However, if the
problem is big, the linear programming method cannot solve
it at a reasonable time. The other two methods introduced
in the article were not able to provide high-quality solu-
tions because of their low search capabilities in the problem
space.
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The meta-heuristic optimization algorithms used to solve
the NRP problem can be grouped into two categories,
namely single-objective and multi-objective categories. In
manymulti-objective problems, the algorithm transforms the
multi-objective problem into a single-objective problem by
giving weight to each of the goals and combining them. The
work (Araújo et al. 2017) proposed an issue based on genetic
algorithm optimization and machine learning to solve the
NRP problem. In the research (Jiang et al. 2010), to select
the optimal set of requirements, the ACO algorithm is com-
bined with a local search algorithm in order to increase the
quality of the solutions to the problem.

Some of the researchers have recently solved the NRP
problem based on multi-objective approach. In multi-
objective problems, none of the objectives are superior to
each other, and each objective has the same importance. The
work (Zhang et al. 2007) formulated the NRP problem in
a multi-objective manner for the first time. The research
(Durillo et al. 2011) analyzed the quality of the solutions
obtained by several multi-objective optimization algorithms
to solve the NRP problem. The work (Del Sagrado et al.
2015) used the multi-objective ACS algorithm to solve this
problem. Here, three types of interactions between require-
ments are defined and included in the datasets for the
first time. The study (Chaves-González and Pérez-Toledano
2015) used the differential evolution algorithm to select the
optimal subset of the proposed requirements. The results
of this algorithm were of higher quality compared to some
other optimization algorithms. In this study, three inter-
actions between requirements are considered and the two
dataset evaluated in this article are made available. The work
(Chaves-González et al. 2015a) used the multi-objective arti-
ficial bee colony optimization algorithm (HMOABC) and
the teaching–learning-based optimization algorithm (TLBO)
(Chaves-González et al. 2015b) to solve this problem. In all
three studies, the datasets are the same and are presented in
crisp form. There are also three types of interactions between
requirements as problem constraints in datasets. The study
(Veerapen et al. 2015) used the integral linear programming
method in two single-objective and multi-objective models.
They were able to find the exact solution to the problem
in a single-objective model and to the multi-objective small
problems. However, their proposedmethod does not have the
proper runtime on large-scale multi-objective problems.

In this paper, we intend to use an artificial chemical reac-
tion optimization algorithm to solve the next release problem.
With the help of its various operators, this algorithm can
search the problem space well. In the software projects, the
occurrence of unforeseen events always changes the cost and
priority of the requirements. For this reason, the allocation
of fuzzy numbers as cost and satisfaction to each require-
ment is more reasonable than the allocation of crisp numbers.
To increase the reliability of the problem solutions, we first

create the datasets using a fuzzy method. Also, to make
the problem seem more realistic, in addition to the three
interactions between requirements, we also define two other
interactions and consider them in the implementation.

3 The problem of selecting an optimal
subset of multi-objective requirements

In the real world, optimization problems have generally sev-
eral objectives. Single-objective problems either have an
objective intrinsically or create one main objective if there
are several objectives in the problem by giving weight to
each objective. For example, in a problem with two objec-
tives f 1 and f 2 we intend to change the problem into a
single-objective problem by giving weights α and β to these
objectives. In Eq. (1), we see that the combination of these
two objectives forms the main objective of the problem (F).
In single-objective problems, there is usually a unique solu-
tion as the absolute answer to the problem.

α ∗ f1 + β ∗ f2 � F (1)

In multi-objective problems, objectives are not combined
and there is no single solution to the problem. However, there
are a set of solutions none of which has superiority over
the others. This set of solutions is called the non-nominated
solutions (NDS). This set shows the Pareto front in the multi-
objective problems diagram (Schütze et al. 2016).

For example, there are k objectives in a problem; and
x � [x1, . . . , xk] and y � [y1, . . . , yk] are two solutions
to this problem. Solution x dominates solution y only if for
all objectives i �1, 2, …, k, x is better or equal to y, and
x is exactly better than y in at least one objective. Other-
wise, none of the two solutions dominates the other. Figure 1
shows three solutions. Objectives f 1 and f 2 are two min-
imum objectives. Solution B dominates solution C because
solution B is of higher quality than solutionC for both objec-
tives, f1(B) < f1(C) and f2(B) < f2(C). The two solutions
A and B are non-dominated because each one dominates the
other in one objective, f1(A) < f1(B) and f2(B) < f1(A).

3.1 Fuzzy concepts

In this subsection, we introduce the definitions and compu-
tational operators required in the paper (Ebrahimnejad et al.
2015, 2016).

Definition 1 A triangular fuzzy number such as Ã is rep-
resented in the form of Ã � (a1, a2, a3) and with the
membership function of Eq. (2). Figure 2 shows a triangular
number with values (1, 2, 3).

μ Ã(x) �
{

x− a1
a2−a1

, a1 ≤ x ≤ a2,
a3−x
a3−a2

, a2 ≤ x ≤ a3,
(2)
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Fig. 1 Pareto front schema

Fig. 2 A triangular number

Let Ã � (a1, a2, a3) and B̃ � (b1, b2, b3) be two nonnega-
tive triangular fuzzy numbers, then addition and multiplica-
tion operations are defined as follows:

Ã+̃B̃ � (a1 + b1, a2 + b2, a3 + b3) (3)

Ã×̃B̃ � (a1 × b1, a2 × b2, a3 × b3). (4)

Definition 2 The α-cut of the triangular fuzzy number

Ã � (a1, a2, a3) is given by
[
Ã
]
α

�
[
ÃL

α , ÃR
α

]
�

[(a2 − a1)α + a1, a3 − (a3 − a2)α].

The distance between two fuzzy numbers is determined
by Eq. (5).

Dp,q ( Ã, B̃) �
⎧⎨
⎩

[
(1 − q)

∫ 1
0

∣∣A−
α − B−

α

∣∣pdα + q
∫ 1
0

∣∣A+
α − B+

α

∣∣pdα
]
, p < ∞

(1 − q) sup
0<α≤1

∣∣A−
α − B−

α

∣∣ + q inf
0<α≤1

∣∣A+
α − B+

α

∣∣, p � ∞
(5)

where the parameter p denotes the priority weight assigned
to the end points of the support. If the expert has no prefer-
ence, Dp, 12

is used. The parameter q determines the analytical

properties of Dp,q. For two fuzzy numbers Ã and B̃, Dp,q is
proportional to:

Dp,q ( Ã, B̃) �
[
(1 − q)

n∑
i�1

∣∣A−
αi

− B−
αi

∣∣p + q
n∑

i�1

∣∣A+
αi

− B+
αi

∣∣p]
1
p

(6)

If q � 1
2 and p �2, we obtain the following:

D2, 12
( Ã, B̃) �

√√√√[
1

2

n∑
i�1

∣∣A−
αi − B−

αi

∣∣2 + 1

2

n∑
i�1

∣∣A+
αi

− B+
αi

∣∣2]

(7)

To compare two fuzzy number Ã and B̃ using the αi-cuts,
we compare them to 0̃ � (0, 0, 0). In fact, Eq. (7) is used to
compute D2, 12

( Ã, 0̃) and D2, 12
(B̃, 0̃). We can conclude that

Ã ≺− B̃ if D2, 12
( Ã, 0̃) ≤ D2, 12

(B̃, 0̃).

3.2 The problem of selecting the requirements

In software engineering projects, eliciting and properly
selecting the requirements are very important. A lot of
research has been done to better understand and elicit the
requirements in the early stages of product development.
Due to the presence of some problems, the proper selection
of requirements has become a major challenge for software
engineers. This is a more serious challenge in the incremen-
tal software developmentmethods throughwhich the product
develops in various releases.

Problems such as conflicting objectives, large number
of requirements for large-scale projects, different levels of
clients importance for software companies, the presence of
clients with different views, companies willingness to meet
the needs of new clients, factors affecting the market and
political factors make this choice very difficult. Despite these
problems, the developer team should select an optimal sub-
set of the requirements which can be of most consent to the
clients with the most economical budget (Del Sagrado et al.
2015). Another factor which makes the choice difficult is the
interaction between requirements. The interaction between
requirements as the limitation of the problem is classified
into four general categories (Del Sagrado et al. 2015).

1. Implication ri ⇒ rj. If the requirement ri does not
develop, the requirement rj cannot develop.

2. Combination ri ⊕ rj. The requirements ri and rj either
develop together or do not develop.

3. Exclusion ri ⊗ rj. The requirement ri and rj that cannot
develop simultaneously.
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4. Modification. The development of the requirement ri
implies that some other requirements change their sat-
isfaction or implementation effort.

The first three interactions are applied as explicit interac-
tions in the projects. However, the fourth interaction which is
implicit is usually ignored. In recent researches (Del Sagrado
et al. 2015; Chaves-González and Pérez-Toledano 2015;
Chavez-Gonzalez et al. 2015a, b), only the first three inter-
actions are considered in simulations. We intend to divide
the fourth interaction into two distinct interactions and apply
them for the first time in our simulations. We define the two
interactions as follows:

(a) rix%�rj. Impact on satisfaction: If the requirement ri
is developed and requirement rj is developed, only x%
of satisfaction rj is applied.

(b) rix%
 rj Impact on satisfaction: If the requirement ri
develops and requirement rj does not, x% of satisfaction
rj is applied.

Applying these two interactions together with the first
three interactions makes the problem more realistic. Lack of
changing the NRP problem into a single-objective problem
has a great advantage for the developer team. In multi-
objective problems, software engineers face a set of NDS
solutions instead of a good solution in the Pareto front dia-
gram. This diagram gives the developer team a great analytic
power for decision making. For example, software engineers
can conclude from the Pareto front diagram how much sat-
isfactions to client are reduced if they cut down the cost of
product by 10%. Or, for example, if they want to increase
the satisfactions to clients by X percent, howmuch extra cost
for product development should they consider (Zhang et al.
2007).

3.3 Fuzzymulti-objective NRP formulation

The fuzzy multi-objective NRP problem is the extended
version of the original NRP problem. In this problem, n
requirements are proposed for development in the next
release. We consider this set as R �{r1…rn}. In the original
NRP problem, a crisp number is considered for the degree
of satisfaction and the cost of each requirement. Since the
priority of the requirements ismostly changed during the exe-
cution of the projects, the allocation of fuzzy numbers instead
of the crisp numbers is more logical (Turan 2017). Also, usu-
ally in projects, due to technical and non-technical problems
in implementing the requirements, the development time of
each requirement may exceed the amount predicted. This
increase in time affects the cost of development of each
requirement. Therefore, taking fuzzy numbers as the cost
of each requirement by experts is more reasonable than tak-

ing crisp numbers. In this problem, we use triangular fuzzy
numbers to show the satisfaction rate and cost of each require-
ment.

Example 1 Assume that seven clients attribute values 6, 9, 8,
1, 7, 4, 9 to the satisfaction rate of the requirement ri. The
lowest and the highest levels of satisfaction rate are 1 and 9,
respectively. To convert these numbers to a triangular fuzzy
number, the smallest value is taken as number a1, the mean
of numbers as number a2, and the largest value as number a3
and yields the fuzzy number Ãi � (1, 6.28, 9).

The satisfaction rate of each requirement is valued by tools
such as questionnaires or survey by clients. These values are
stored in a matrix aij where i �1, 2, 3 and j �1, 2, …, n
is maintained. The cost of each requirement takes a fuzzy
value by the experts and stored in a matrix eij where i �1, 2,
3 and j �1, 2, …, n. For each developer team, clients have
different levels of importance. For each number of clients,
the level of client importance is calculated as in Example 1
and is maintained by the vector W̃ � (w1, w2, w3).

The overall satisfaction level of each requirement is stored
in the matrix S which is a 3 * n dimension matrix. The over-
all satisfaction level of the ith requirement is calculated by
Eq. (8).

s̃i � W̃ ×̃ãi (8)

In the FMONRP problem, each solution is encoded as a
vector X where the ith cell is located in the vector corre-
sponding to the ith requirement in the R set, where i value
is i �1, 2, …, n. In Fig. 3, a solution is displayed. In each
solution, each requirement that is selected for development in
the next release accepts value 1 in its corresponding cell, and
otherwise value 0. In the FMONRP problem, the objective is
to find a solution that provides the highest level of benefits
to clients with the least development cost. In addition to the
twoobjectivesmentioned, there are also two limitations in the
problem that solutions must satisfy them. The first limitation
is five interactions between requirements, as explained in the
previous section. The second limitation is the cost thresh-
old; that is, each solution should have a cost less than the
threshold value. We define the cost threshold with the fuzzy
number T̃c. For example, T̃70% is a fuzzy number that equals
70% of the total cost. Inequality (9) expresses this limitation.

…

0101

Fig. 3 Structure of a solution
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To evaluate this inequality, first we use Formula (7) and then
we compare the two sides of the inequality with the fuzzy
number 0̃ � (0, 0, 0). If the fuzzy number X×̃ẽi obtained
is smaller than the fuzzy number of the cost threshold, it is
acceptable. Otherwise, the X solution is invalid.

X×̃ẽi ≤ T̃c (9)

The FMONRP problem is expressed by Eq. (10) as follows:

Max S(x) �
n∑

i�1

s̃i × xi

Min E(x) �
n∑

i�1

ẽi × xi

Subject to cost threshold constraint&& interaction constraint
(10)

4 Fuzzymulti-objective artificial chemical
reaction optimization for NRP

In this paper, we propose a meta-heuristic optimization algo-
rithm based on the artificial chemical reaction optimization
algorithm for problem solving. ACRO is a population-based
swarm intelligence meta-heuristic inspired by natural chem-
ical reaction (Lam and Li 2010; Rao and Banka 2017). A
chemical reaction is a natural process of transforming the
unstable chemical substances molecules to the stable ones. A
chemical reaction starts with some unstable molecules with
excessive energy. The molecules interact with each other.
They are converted to those with minimum energy to sup-
port their existence. The energy associated with amolecule is
called as entropywhich can be considered as fitness function.
Reactions may be bimolecular or monomolecular depending
on the number of molecules taking part in the reaction. This
property is embedded in ACRO to solve optimization prob-
lems. ACRO algorithm starts with set of initial molecules in
a population. Then molecules are consumed and produced
via chemical reactions. The algorithm terminates when the
criteria of the problem are satisfied (Nayak et al. 2015). The
flowchart of the ACRO algorithm is shown in Fig. 4.

In the first step, algorithm parameters such as the number
of atoms per molecule, the total number of molecules (Num-
Mole), the boundary of the search space and the algorithm
termination conditions are determined. In the second step, a
number ofmolecules equal toNumMole are randomly gener-
ated to create an initial population. After generating primary
molecules, their fitness amounts are evaluated. At algorithm
ACRO, the amount of the fitness of each molecule is called
the level of enthalpy of that molecule. In the third step, chem-
ical reactions occur between the molecules. In the ACRO

Start

Initialize parameters

Generate the initial molecules 
and evaluate fitness

Apply chemical 
reactions on molecules

Select molecules 
and replacement

Termination 
criterion 
satisfied?

No

Yes

Output molecule 
with best fitness   

Finish

Fig. 4 Flowchart of the ACRO algorithm

algorithm, chemical reactions act as search operators such as
crossover and mutation in the genetic algorithm. After the
occurrence of chemical reactions, newmolecules are created
(Dam et al. 2017).

In the following subsection, we introduce the vari-
ous chemical reactions of the ACRO algorithm as binary
encoded. In the fourth step, new molecules are evaluated in
terms of enthalpy, and they are replaced by older molecules if
they are better. These steps continue until the conditions for
terminating the algorithm aremet. The termination condition
can be the number of specific iterations or the convergence of
the algorithm solutions. Finally, the best algorithm solutions
are used as output.
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Molecule 1 0 0 1 1 0 1
Molecule 2 1 0 1 0 1 1
Mask bit 1 1 0 1 0 1
New molecule1 1 0 1 0 0 1
New molecule2 0 0 1 1 1 1

Fig. 5 A binary display of the displacement reaction

molecule1 0 0 1 0 0 1
molecule2 1 0 1 1 1 1
New molecule 0 0 1 1 0 1

Fig. 6 A synthesis reaction

4.1 Types of chemical reactions of the ACRO
algorithm

Chemical reactions are divided into bimolecular and
monomolecular groups depending on the number of par-
ticipating molecules. Bimolecular reactions involve two
molecules such as synthesis, Redox2 and displacement.
Monomolecular reactions are those in which only one
molecule is involved such as Redox1 and decomposition.

4.1.1 Displacement reaction

In the displacement reaction, two new molecules (two chil-
dren) are produced by considering two old molecules (two
parents). A random binary mask is created of the size of the
molecules. If ith bit of the mask is 1, ith bit of new molecule
1 is copy of ith bit of molecule 2, and ith bit of new molecule
2 is copy of ith bit of molecule 1. Otherwise, if ith bit of
the mask is 0, ith bit of new molecule 1 is copy of ith bit
of molecule 1, and ith bit of new molecule 2 is copy of ith
bit of molecule 2. Figure 5 shows a binary display of the
displacement reaction.

4.1.2 Synthesis reaction

In this reaction, two molecules participate and create a new
molecule (child). Non-matching bits of two molecules are
determined. Then, one bit from the non-matching bit of the
first molecule and one bit from the non-matching bit of the
second molecule are consecutively selected to form a new
molecule. Figure 6 shows a synthesis reaction.

4.1.3 Redox1 reaction

In this reaction, only one molecule is involved. One of the
atoms of this molecule is randomly selected. In case its value
is 1, it is changed to 0, and if the value is 0, it is changed to
1. This reaction acts as the mutation operator in the genetic
algorithm. Figure 7 shows a binary display of a Redox1 reac-
tion.

1 0 1 0 0 1 molecule
1 0 1 1 0 1 New molecule

Fig. 7 The binary display of a Redox1 reaction

1 0 1 0 0 1 1 molecule1
0 0 0 1 1 1 0 Molecule2
1 0 0 1 1 1 1 New molecule1
0 0 1 0 0 1 0 New molecule2

Fig. 8 The binary display of a Redox2 reaction

1 0 1 0 0 1 1 molecule
1 0 0 1 1 1 1 New molecule

Fig. 9 The binary display of a decomposition reaction

4.1.4 Redox2 reaction

In this reaction, two molecules are involved that produce two
new molecules. This reaction acts as a two-point crossover
operator in the genetic algorithm. Two indices of molecule
are randomly generated and the bits of themolecules between
the two indices are exchanged to produce two newmolecules.
Figure 8 shows the binary display of a Redox2 reaction.

4.1.5 Decomposition reaction

In this reaction, only one molecule is involved. Two atoms
are randomly selected from the molecule, and the amount of
all the atoms between them is flipped in order to create a new
molecule. The amount of the rest of the atoms of the new
molecule is the same as those of the old molecule. Figure 9
shows a binary display of a decomposition reaction.

4.2 Fuzzymulti-objective artificial chemical reaction
optimization

In the proposedmethod, the non-dominated sorting technique
(Deb et al. 2002) and the non-dominated solution archive
technique (Knowles and Corne 1999) are used. By use of
the non-dominated sorting technique, we arrange the solu-
tions obtained based on their dominance ranking and their
crowding distance. In multi-objective problems, a solution is
better than another solution only if it has a lower dominance
ranking or, in the case of equality, a greater crowding dis-
tance. Using the non-dominated solution archive technique,
we store the best solutions found during each iteration in the
archive. In the algorithm 1, the FMOACRO pseudo-code is
shown to solve the problem of NRP.
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Algorithm 1. The FMOACRO pseudo-code for solving the problem of FNRP.
Input: NumMoles /* number molecules population */

Output: NDS-archive

1: R=generate initial molecules. /* R is the molecules population */

2: R= check(R). /* The molecules in the R set are sent to the Check function to verify their validity and evaluate 

3: NDS-archive = empty

4: While (not stop condition satisfied)

5:   newR=empty. /* newR is new molecules population that creating in Apply chemical reactions */

6:   for i=1: NumMoles

7:     from R random chose two molecules. /* for example r1, r2 */

8:     r = rand. /* create a random number from (0,1) and save in r variable */

9:     /* Apply chemical reactions on molecules */

10: if (r < 0.2)  /* do Synthesis reaction */

11: newReact = Synthesis reaction (r1, r2) /* in Synthesis reaction create a new molecule */

12: newR = newR ∪ check(newReact).  

13: else if (r<0.4) /* do displacement reaction */

14: [newReact1, newReact2] = displacement reaction (r1, r2) /* in displacement reaction create two new 
molecules */
15: newR = newR ∪ check(new molecule1) ∪ check(new molecules2) 

16: else if (r<0.6) /* do redox1 reaction */

17: newReact = redox1 reaction (r1) /* in redox1 reaction create a new molecule */

18: newR = newR ∪ check(newReact).

19: else if (r<0.8) /* do redox2 reaction */

20: [newReact1, newReact2] = redox2 reaction (r1, r2) /* in redox2 reaction create two new molecules */

21: newR = newR ∪ check(newReact1) ∪ check(newReact2) 

22: else /* do decomposition reaction */

23: newReact = decomposition reaction (r2) /* in decomposition reaction create a new molecule */

24: newR = newR ∪ check(newReact).

25: end for

26:   R= R ∪ newR   /* union population newR with population R */

27:   R= CalculateRC(R).  /* function CalculateRC calculate rank and crowding distance each molecule in 
population R */

28:   NDS-archive = update NDS-archive(R). 

29:   R= save best NumMoles molecules and remove other molecules. /* update and select molecules */

30:   remove population newR

31:  end while

their enthalpy. */
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The input to the algorithm is the NumMoles parameter.
This parameter specifies the number of molecules in the pop-
ulation. In the first line, the algorithm initially generates the
NumMoles molecule randomly and holds it in the R popula-
tion. In this case, each molecule is an n-dimensional vector
where n is the number of the proposed requirements. Each
molecule is in fact a solution to the problem. How to generate
each molecule is described in Sect. 3.3. In the second line,
molecules of population R are sent to the check function to
verify their validity and evaluate their enthalpy. As discussed
in Sect. 3.2, the problem has two kinds of limitations. If the
molecules violate the limitations of the problem, they are
modified within the check function, and then their cost and
satisfaction rates are calculated. The presence of the check
function ensures that all molecules of the population R are
valid. In the third line, the NDS-archive set is created with a
null value. In each iteration, the discovered NDSs are stored
in the NDS-archive. In the fourth line, iterations of the algo-
rithm start until the termination condition. In the fifth line,
in each iteration, a new R population is defined with empty
value. In the newR population, newmolecules produced from
chemical reactions are stored in the current iteration. In the
sixth line, a for loop is considered. Because of this loop, a
number of chemical reactions equal to NumMoles occur in
each iteration. In the seventh line, for each chemical reaction,
two molecules are randomly selected from the R population.
A random and independent selection of two molecules from
the population for participating in the reaction may cause
some molecules not to be selected in all iterations or enter
the reactions more than once. The results (Rada-Vilela et al.
2011) show that this style of selection can lead to faster con-
vergence of solutions. In contrast to this method of selecting
molecules, there are many other methods. Two examples of
these methods are: 1. Sequential selection of each molecule
for participation in chemical reactions. 2. Use of the roulette
wheel to consider a greater chance of selecting themost desir-
able molecules.

In each reaction, one or two new molecules may be gen-
erated which will be added to the new R population after
being sent to the check function. Depending on the ran-
dom number r produced in the eighth line, one of the five
chemical reactions occurs. For example, if the value of r is
<0.2, the synthesis reaction occurs from line 10 to 12. In
the synthesis reaction, two molecules participate and pro-
duce a new molecule. Depending on the number of r, each
of the chemical reactions of lines 10–24 can occur. With the
completion of chemical reactions, in line 26, the population
of new molecules (new R) is merged with that of the old
molecules (R). To determine NDSs, the population R is sent
to the calculate RC function.

In this function, the population R solutions are sorted
according to non-dominated ranks and crowding distance.
One solution is better than the other solution only if it has

a lower dominance ranking or, in case of equality, it has
more crowding distance. In line 28, the NDSs discovered
from population R are stored in the NDS-archive. In line 29,
to maintain the population size, the NumMole of the more
promising molecule of R population is kept the rest of the
molecules are eliminated.

One of the differences between the FMOACRO algorithm
and most of the other evolutionary algorithms such as GA,
PSO, and ABC is the number of molecules produced from
chemical reactions; that is, for example, in the synthesis
chemical reaction, two molecules are involved which pro-
duce a newmolecule. However, in the displacement chemical
reaction, twomolecules are involved which produce two new
molecules. Yet, in most evolutionary algorithms, the number
of operator outputs is exactly specified.

One of the advantages of the FMOACRO algorithm over
other meta-heuristic algorithms is having many operators.
For example, the PSO algorithm only uses the update oper-
ator and the GA algorithm uses the crossover and mutation
operators. However, the FMOACRO algorithm uses five dif-
ferent powerful operators. The presence of these diverse
operators leads to a complete explore of the search space
and finding the optimal solution in a shorter time.

5 Experiments

In this section, we will conduct experiments on two random-
ized synthetic datasets and present the related results. Since
there are no fuzzy datasets in the previous research, we can-
not compare the results of our proposed method with them.
The experiments were performed with the R2016b version
of the MATLAB software on a system with an Intel core i7,
a 1.60 GHz processor, a 4 GB RAM, and a 64-bit Windows
10 operating system. Since we have random algorithms in
these experiments, each algorithm is run 20 times indepen-
dently. Subsequently, the mean and the standard deviation of
the results of each algorithm are presented. On both datasets,
three development cost limits (of 40%, 70%, 100% of the
total development cost) are considered.

5.1 Datasets and experiment criteria

The first dataset includes 24 requirements and 12 interactions
between requirements. In Table 1, the priority and the cost
of development of each requirement are presented as fuzzy
numbers. The priority level of each requirement for develop-
ment in the next release can be asked from clients by means
of questionnaires. The questionnaire can be given to clients
in the form of crisp numbers and converted by the develop-
ment team into fuzzy numbers. These scores show the level
of clients satisfaction of each requirement for development
in the next release. The lowest score given to each require-
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Table 1 First dataset r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12

a1i 1 2 2 1 2 2 1 3 2 1 2 1

a2i 4 3 4 2 3 3 3 4 4 2 3 2

a3i 5 4 5 4 5 4 5 5 5 3 4 4

c1i 2 1 2 1 3 2 1 2 1 1 2 1

c2i 3 3 3 2 4 3 2 3 3 3 3 3

c3i 5 4 4 3 5 5 3 4 4 4 5 5

r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24

a1i 1 2 1 1 1 1 2 3 1 1 2 2

a2i 2 3 2 2 3 3 3 4 4 4 4 3

a3i 3 5 3 5 5 4 5 5 5 5 5 4

c1i 2 1 2 1 3 1 3 1 1 2 2 2

c2i 3 2 3 2 4 2 4 3 2 3 4 3

c3i 4 3 5 4 5 4 5 5 4 4 5 4

r4 ⇒ r10 r11 ⇒ r17 r14 ⇒ r17 r12 ⊕ r15 r22 ⊕ r19 r2 ⊕ r9 r5 ⊕ r24
r360%�r10 r470%�r7 r150%�r15 r1140%
r6 r2125%
r22

ment is set to 1. In fact, the client has the least interest in
developing this requirement in the next release while score
5 shows that the client is most interested in developing this
requirement in the next release. Due to the change in the
requirements priority that usually occurs when projects are
running, considering fuzzy numbers instead of crisp numbers
is much more suitable. The developer team can convert the
priority scores of any number of clients to a fuzzy number
using the method described in Sect. 3.3. The cost of devel-
oping any requirement may also change due to technical and
unforeseen problems. Using fuzzy numbers instead of crisp
numbers is also more reasonable for the cost. The cost of any
requirement like rj is calculated by the system’s experts and
is considered as (c1 j , c2 j , c3 j ).

In this dataset, 12 interactions are considered as a con-
straint between requirements. We describe two examples of
these interactions. The exclusion interaction between the two
requirements r2 and r9 states that these two requirements
cannot be developed together in the next release. If both
requirements are simultaneously selected, the requirement
r2 must be deleted. The impact on cost interaction between
the two requirements r4 and r7 states that if the requirement
r4 develops, and also if the requirement r7 develops, only
70% of the cost of requirement r7 is applied.

The second dataset includes 72 requirements and 20 inter-
actions between requirements. In Table 2, fuzzy numbers
show the satisfaction rate and cost of each requirement. This
dataset is much more complex than the previous dataset. In
addition, the range of scores for each requirement is from 1 to
10. For each software company, clients have different impor-
tance levels. The clients importance levels can be considered
as crisp or fuzzy numbers. In this experiment, we consider

the importance level of clients in every dataset as a triangular
fuzzy number. Tables 3 and 4 show other parameters related
to datasets 1 and2, respectively.

In each test, we evaluate the quality of the solutions of
the proposed method with three indicators of checking the
quality of multi-objective problems. The first indicator to be
evaluated is the number of non-dominated solutions (NDS)
found by the algorithm. The more NDSs found on the Pareto
front diagram, the better.

The second quality indicator was the spread achieved
by the set of NDS (�-spread). This indicator calculates
the diversity of the solutions by using the Euclidean dis-
tances between consecutive solutions in the Pareto front.
Pareto fronts with a smaller spread are preferred. �-Spread
is defined by Eq. (11).

� � d f + dl +
∑N−1

i�1 |di − −
d|

d f + dl + (n − 1)d
(11)

where di is the Euclidean distance between two consecutive
solutions, d̄ is the mean distance between each pair of solu-
tions, N is the number of solutions in the Pareto front, and
df and dl are, respectively, the Euclidean distance from the
first and the last solution in the Pareto front to the extreme
solutions of the optimal Pareto front in the objective space.

The third indicator of quality is hypervolume (HV). This
indicator calculates the volume covered by the members of
the NDS-archive using Eq. (12).

HV � volume (∪|NDS - archive|
i�1 vi ) (12)
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Table 2 Second dataset r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12

a1i 4 2 1 5 7 1 2 3 2 2 3 6

a2i 7 6 4 7 8 3 5 6 7 3 5 8

a3i 8 8 6 9 9 8 7 9 9 4 8 9

c1i 5 2 1 1 5 3 2 3 6 6 3 4

c2i 7 3 2 4 6 4 4 6 7 7 6 5

c3i 9 4 3 6 8 6 6 7 9 8 9 6

r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24

a1i 3 4 2 3 1 3 2 4 6 7 1 1

a2i 7 6 3 5 2 6 7 5 7 8 3 3

a3i 8 8 4 8 3 9 9 6 9 9 8 5

c1i 4 3 6 3 1 3 6 4 3 5 3 3

c2i 5 5 7 6 2 6 7 5 4 6 4 5

c3i 7 6 8 9 3 7 9 6 6 8 6 7

r25 r26 r27 r28 r29 r30 r31 r32 r33 r34 r35 r36

a1i 2 1 7 2 4 2 3 7 1 2 3 2

a2i 6 4 8 5 5 3 5 8 3 4 6 7

a3i 8 6 9 6 9 4 8 9 8 7 9 9

c1i 2 1 6 4 6 6 3 5 3 2 3 6

c2i 3 2 7 7 8 7 6 6 4 3 6 7

c3i 4 3 8 9 9 8 9 8 6 4 7 9

r37 r38 r39 r40 r41 r42 r43 r44 r45 r46 r47 r48

a1i 2 1 5 3 2 2 1 4 2 3 7 6

a2i 4 4 7 6 7 6 4 5 3 5 8 7

a3i 6 6 9 9 9 8 6 8 4 8 9 9

c1i 3 1 1 3 6 2 1 3 6 3 7 1

c2i 5 2 4 6 7 3 2 4 7 6 8 2

c3i 7 3 6 7 9 4 3 6 8 9 9 4

r49 r50 r51 r52 r53 r54 r55 r56 r57 r58 r59 r60

a1i 4 3 5 3 7 1 1 3 2 1 3 2

a2i 5 4 6 5 8 3 2 5 6 4 6 7

a3i 9 6 8 8 9 8 4 7 8 6 9 9

c1i 3 2 6 3 5 3 1 1 2 1 3 6

c2i 5 5 7 6 6 4 2 3 3 2 6 7

c3i 6 7 8 9 8 6 4 5 4 3 7 9

r61 r62 r63 r64 r65 r66 r67 r68 r69 r70 r71 r72

a1i 1 7 1 1 5 2 3 7 3 2 2 1

a2i 4 8 3 4 7 3 5 8 6 7 6 4

a3i 8 9 8 6 9 4 8 9 9 9 8 6

c1i 3 5 3 1 1 6 3 4 3 6 2 1

c2i 5 6 4 2 4 7 6 5 6 7 3 2

c3i 7 8 6 3 6 8 9 6 7 9 3 3
r34 ⇒ r20 r21 ⇒ r47 r34 ⇒ r37 r40 ⇒ r57
r12 ⊕ r25 r32 ⊕ r29 r43 ⊕ r39 r52 ⊕ r69
r11 ⊗ r30 r23 ⊗ r24 r55 ⊗ r51 r56 ⊗ r72
r3350%�r38 r6160%�r37 r2055%�r51 r7265%�r64
r1730%
r38 r3040%
r27 r4515%
r66 r4220%
r64
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Table 3 Other parameters of the first dataset

Parameters Values

Rmin (cost, satisfaction) (0, 0)

Rmax 40% (cost, satisfaction) (80, 334)

Rmax 70% (cost, satisfaction) (140, 536)

Rmax 100% (cost, satisfaction) (201, 699)

W1 �clients weight (1, 2.8, 4)

n α-cut 10

Number molecules 40

Iterations 200

Table 4 Other parameters of the second dataset

Parameters Values

Rmin (cost, satisfaction) (0, 0)

Rmax 40% (cost, satisfaction) (428, 2218)

Rmax 70% (cost, satisfaction) (750, 3318)

Rmax 100% (cost, satisfaction) (1070, 4192)

W2 �clients weight (1, 2.6, 5)

n α-cut 10

Number molecules 150

Iterations 200

HV measures the diversity and convergence of the Pareto
fronts obtained. One Pareto front has a larger HV than the
other if solutions in the better front are more widely dis-
tributed than in the other or some solutions in the better
front dominate solutions in the other. Algorithms with higher
amounts of HV are better. In order to calculate this indicator,
two reference points were required. Since the problem we
were addressing has two objectives, these points were rmin

(obj1min, obj2min) and rmax (obj1max, obj2max). These points
contain the maximum and minimum amounts for the two
objectives. For maximum the hypervolume, both objective
function amounts had to be normalized. The normalization
points used for each dataset are presented in Tables 3 and 4.

5.2 Experiments and analysis of the results

One of the most important evaluation criteria in multi-
objective problems is non-dominated solutions. The more
NDSs are discovered by an algorithm in the Pareto front
diagram, the better the algorithm worked. In multi-objective
problems, the NDS criterion also affects other criteria. Fig-
ure 10 shows the graph of the number of detected NDSs per
iteration for both datasets.

The fact that the second dataset is larger than the first
dataset has made the NDS of the second dataset much larger.
In both of these figures, it is seen that in some of the itera-
tions, there has been a slight drop in the graph and a decrease
in the number of NDSs. The reason for this is that discover-
ing a new NDS in the current iteration has led to the defeat
of a number of discovered NDSs in previous iteration. How-
ever, as the trend of the algorithm continued, the number of
NDSs is continuously added. In both figures, it can be seen
that graphs are converging. It emphasizes the fact that the
proposed method has detected almost all NDSs.

Table 5 shows the average and standard deviation of the
results from 20 independent implementation of the proposed
method on both datasets. The number of molecules of the
proposed algorithm in the first and the second dataset tests
was 40 and 150, respectively. Also, the number of iterations
in all tests equaled 200. Since the proposed algorithm is acci-
dental, considering the standard deviation criterion besides
the average indicates the reliability of the results much better.
As discussed in the previous sections, one of the limitations
of the problem was to consider the maximum cost ceiling.
This limitation usually applies when companies plan to save
costs. During the experiment, each dataset was examined
with three different ceilings.

Another criterion for evaluating the solutions in Table 5
is the �-spread criterion. The results of this criterion show
the distribution of NDSs in the Pareto front diagram. The
lower the �-spread criterion, the more helpful the solu-
tions obtained by the algorithm for the developer team in
making decision. The results of the proposed method in
the �-Spread criterion show a fairly uniform distribution of
NDS in the diagram. Figure 10 graphs show the distance
between each two consecutive NDSs. The results of the HV
criterion were calculated in both datasets and all three cost
ceilings through normalization. In Tables 3 and 4, there are
two reference points for each dataset and the cost ceiling is
specified. The runtime of all tests is shown in Table 5. The
second dataset had more runtime due to more complexity
and more calculations. In both datasets, tests with a 40%
cost limit have the highest runtime. The second-long run-
time was due to tests with a 70% cost limit. The reason
for this is the modification of the molecules by the algo-
rithm. Molecules that violate the problem limit are modified
in the check function. Because molecules in tests with 40%
limit had the highest need for repair, they also have the high-
est runtime. In experiments with no cost limits, there is no
need for modifying the molecules. Therefore, all molecules
are valid in this regard. This has led to their shorter run-
time.
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Fig. 10 The graph of the number of detected NDSs per iteration

Table 5 Mean and standard
deviation of the solutions of the
proposed method based on the
criteria of the problem

NDS HV �-Spread Time (s)

Dataset 1

Cost boundary 40% 48, 2, 87 52.9%, 3.3e−3 0.58, 4.2e−2 2.54, 5.8e−2

Cost boundary 70% 80.2, 4.94 52.3%, 7.7e−3 0.56, 4e−2 2.48, 5e−2

Without cost boundary 115.6, 5.63 55.2%, 2.6e−3 0.55, 2.9e−2 2.35, 4.4e−2

Dataset 2

Cost boundary 40% 359.8, 30.95 55.2%, 3.3e−2 0.81, 2.8e−2 26.49, 2.70

Cost boundary 70% 380.1, 30.01 56.3%, 7.1e−3 0.79, 3.1e−2 23.7, 1.9e−2

Without cost boundary 454.2, 21.56 56.7%, 5.4e−3 0.78, 5.4e−2 18.55, 3.57

Figure 11 shows the Pareto front diagrams of each test as
well as the HV diagram of both datasets without any cost
limits. In the HV diagram, all solutions located in the green
zone are defeated by at least one of the NDS solutions.

6 Conclusion

In this paper, the FMONRP problem was investigated. The
original version of the NRP problem has been one-objective.
However, since this problem faces two opposing objectives
simultaneously, a multi-objective version of it has also been
introduced in previous research. In this paper, we intro-
duced the fuzzy multi-objective version of this problem for
the first time. Using fuzzy numbers instead of crisp data is
more logical and more practical. Due to the complexity and
limitations in this problem, we used an artificial chemical

reaction optimization algorithm. We defined two new inter-
actions between requirements. During the implementation,
five interactions were used between the requirements as one
of the limitations of the problem. The results of the proposed
algorithm were evaluated with three criteria of the multi-
objective problems. The results and graphs of the proposed
algorithm are very reliable and can help the developer team
with the decision-making process.

The following works can be done as the new researches
in this area:

• The use of other evolutionary algorithms to solve a prob-
lem or combine several evolutionary algorithms together.

• Introducing new methods for converting crisp values of
questionnaires to fuzzy numbers.

• Allocation of fuzzy numbers of other types to the satisfac-
tion rate and cost of each requirement.
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Dataset 2Dataset 1

Fig. 11 Pareto front graphs and HV
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Fig. 11 continued
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